OPEN GROMOV-WITTEN INVARIANTS, MIRROR MAPS, AND SEIDEL REPRESENTATIONS FOR TORIC MANIFOLDS

被引:16
|
作者
Chan, Kwokwai [1 ]
Lau, Siu-Cheong [2 ]
Leung, Naichung Conan [1 ,3 ]
Tseng, Hsian-Hua [4 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[4] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
CALABI-YAU MANIFOLDS; QUANTUM COHOMOLOGY; SYMMETRY; HOMOLOGY; RINGS;
D O I
10.1215/00127094-0000003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact toric Kahler manifold with -K-X nef. Let L subset of X be a regular fiber of the moment map of the Hamiltonian torus action on X. Fukaya-Oh-Ohta-Ono defined open Gromov-Witten (GW) invariants of X as virtual counts of holomorphic discs with Lagrangian boundary condition L. We prove a formula which equates such open GW invariants with closed GW invariants of certain X-bundles over P-1 used to construct the Seidel representations for X. We apply this formula and degeneration techniques to explicitly calculate all these open GW invariants. This yields a formula for the disc potential of X, an enumerative meaning of mirror maps, and a description of the inverse of the ring isomorphism of Fukaya-Oh-Ohta-Ono.
引用
收藏
页码:1405 / 1462
页数:58
相关论文
共 50 条
  • [21] Two-Sphere Partition Functions and Gromov-Witten Invariants
    Jockers, Hans
    Kumar, Vijay
    Lapan, Joshua M.
    Morrison, David R.
    Romo, Mauricio
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (03) : 1139 - 1170
  • [22] The orientability problem in open Gromov-Witten theory
    Georgieva, Penka
    GEOMETRY & TOPOLOGY, 2013, 17 (04) : 2485 - 2512
  • [23] ON THE GENUS-ONE GROMOV-WITTEN INVARIANTS OF COMPLETE INTERSECTIONS
    Li, Jun
    Zinger, Aleksey
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 82 (3-4) : 641 - 690
  • [24] Computing genus zero Gromov-Witten invariants of Fano varieties
    Maszczyk, Tomasz
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1079 - 1092
  • [25] COMPUTING GENUS-ZERO TWISTED GROMOV-WITTEN INVARIANTS
    Coates, Tom
    Corti, Alessio
    Iritani, Hiroshi
    Tseng, Hsian-Hua
    DUKE MATHEMATICAL JOURNAL, 2009, 147 (03) : 377 - 438
  • [26] New recursions for genus-zero Gromov-Witten invariants
    Bertram, A
    Kley, HP
    TOPOLOGY, 2005, 44 (01) : 1 - 24
  • [27] Parabolic bundles, products of conjugacy classes and Gromov-Witten invariants
    Teleman, C
    Woodward, C
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (03) : 713 - +
  • [28] QUANTUM KIRWAN MORPHISM AND GROMOV-WITTEN INVARIANTS OF QUOTIENTS I
    CHRIS T. WOODWARD
    Transformation Groups, 2015, 20 : 507 - 556
  • [29] Gromov-Witten theory of complete intersections via nodal invariants
    Arguz, Hulya
    Bousseau, Pierrick
    Pandharipande, Rahul
    Zvonkine, Dimitri
    JOURNAL OF TOPOLOGY, 2023, 16 (01) : 264 - 343
  • [30] GROMOV-WITTEN INVARIANTS FOR G/B AND PONTRYAGIN PRODUCT FOR ΩK
    Leung, Naichung Conan
    Li, Changzheng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2567 - 2599