OPEN GROMOV-WITTEN INVARIANTS, MIRROR MAPS, AND SEIDEL REPRESENTATIONS FOR TORIC MANIFOLDS

被引:16
|
作者
Chan, Kwokwai [1 ]
Lau, Siu-Cheong [2 ]
Leung, Naichung Conan [1 ,3 ]
Tseng, Hsian-Hua [4 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[4] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
CALABI-YAU MANIFOLDS; QUANTUM COHOMOLOGY; SYMMETRY; HOMOLOGY; RINGS;
D O I
10.1215/00127094-0000003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact toric Kahler manifold with -K-X nef. Let L subset of X be a regular fiber of the moment map of the Hamiltonian torus action on X. Fukaya-Oh-Ohta-Ono defined open Gromov-Witten (GW) invariants of X as virtual counts of holomorphic discs with Lagrangian boundary condition L. We prove a formula which equates such open GW invariants with closed GW invariants of certain X-bundles over P-1 used to construct the Seidel representations for X. We apply this formula and degeneration techniques to explicitly calculate all these open GW invariants. This yields a formula for the disc potential of X, an enumerative meaning of mirror maps, and a description of the inverse of the ring isomorphism of Fukaya-Oh-Ohta-Ono.
引用
收藏
页码:1405 / 1462
页数:58
相关论文
共 50 条
  • [1] Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifolds
    Chan, Kwokwai
    Lau, Siu-Cheong
    Leung, Naichung Conan
    Tseng, Hsian-Hua
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (03) : 675 - 720
  • [2] RELATIVE GROMOV-WITTEN INVARIANTS AND THE ENUMERATIVE MEANING OF MIRROR MAPS FOR TORIC CALABI-YAU ORBIFOLDS
    You, Fenglong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (11) : 8259 - 8288
  • [3] GROSS FIBRATIONS, SYZ MIRROR SYMMETRY, AND OPEN GROMOV-WITTEN INVARIANTS FOR TORIC CALABI-YAU ORBIFOLDS
    Chan, Kwokwai
    Cho, Cheol-Hyun
    Lau, Siu-Cheong
    Tseng, Hsian-Hua
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 103 (02) : 207 - 288
  • [4] Intrinsic mirror symmetry and punctured Gromov-Witten invariants
    Gross, Mark
    Siebert, Bernd
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 199 - 230
  • [5] Gromov-Witten invariants on Grassmannians
    Buch, AS
    Kresch, A
    Tamvakis, H
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 901 - 915
  • [6] Gromov-Witten Theory of Toric Birational Transformations
    Acosta, Pedro
    Shoemaker, Mark
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (20) : 7037 - 7072
  • [7] Gromov-Witten invariants and localization
    Morrison, David R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (44)
  • [8] OPEN VIRTUAL STRUCTURE CONSTANTS AND MIRROR COMPUTATION OF OPEN GROMOV-WITTEN INVARIANTS OF PROJECTIVE HYPERSURFACES
    Jinzenji, Masao
    Shimizu, Masahide
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (01)
  • [9] Gromov-Witten invariants and quantum cohomology
    Mukherjee, Amiya
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 459 - 475
  • [10] Gromov-Witten invariants and quantum cohomology
    Amiya Mukherjee
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 459 - 475