Constrained linear time-varying quadratic regulation with guaranteed optimality

被引:5
作者
Ding, Baocang [1 ]
Tang, Julia H.
机构
[1] Hebei Univ Technol, Sch Elect & Automat, Tianjin 300130, Peoples R China
[2] China Lithium Ltd Co, Shanghai 201400, Peoples R China
关键词
constrained quadratic regulation; polytopic inclusion; min-max optimization; linear matrix inequality;
D O I
10.1080/00207720601051604
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A suboptimal solution to constrained linear time varying quadratic regulation (CLTVQR) is proposed. In a neighborhood of the origin, the problem is formulated as a min-max LQR based on polytopic inclusion of the dynamics in this neighborhood. Outside this neighborhood, the control moves are obtained by solving a constrained finite horizon optimization problem. The main contribution is to obtain a cost value arbitrarily close (but not equal) to that of the optimal CLTVQR. The suboptimal CLTVQR preserves the feasibility of the optimal CLTVQR if and only if the min-max LQR exists feasible solution. By mild modification, this suboptimal method can be applied to nonlinear systems.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1994, LINEAR MATRIX INEQUA
[2]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[3]   Min-max predictive control strategies for input-saturated polytopic uncertain systems [J].
Casavola, A ;
Giannelli, M ;
Mosca, E .
AUTOMATICA, 2000, 36 (01) :125-133
[4]   Constrained linear quadratic optimal control of chemical processes [J].
Choi, JH ;
Ko, HS ;
Lee, KS .
COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) :823-827
[5]  
Cuzzola FA, 2002, AUTOMATICA, V38, P1183, DOI 10.1016/S0005-1098(02)00012-2
[6]   Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J].
Daafouz, J ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2001, 43 (05) :355-359
[7]   A new discrete-time robust stability conditions [J].
de Oliveira, MC ;
Bernussou, J ;
Geromel, JC .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :261-265
[8]   CYCLOMONOTONICITY AND STABILIZABILITY PROPERTIES OF SOLUTIONS OF THE DIFFERENCE PERIODIC RICCATI EQUATION [J].
DENICOLAO, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1405-1410
[9]   Design and analysis of constrained nonlinear quadratic regulator [J].
Ding, BC ;
Li, SY .
ISA TRANSACTIONS, 2003, 42 (02) :251-258
[10]   A synthesis approach of on-line constrained robust model predictive control [J].
Ding, BC ;
Xi, YG ;
Li, SY .
AUTOMATICA, 2004, 40 (01) :163-167