A Brachypodium distachyon MAPKK Gene BdMKK6.2 Negatively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants

被引:7
|
作者
Sun, Jiutong [1 ]
Zhou, Run [1 ]
Li, Yaping [1 ]
Hu, Wei [1 ]
Qiu, Ding [1 ]
Wang, Xiatian [1 ]
Wang, Qiong [1 ]
Feng, Zhijuan [1 ]
Wang, Lianzhe [1 ]
Zhou, Yi [1 ]
He, Guangyuan [1 ]
Yang, Guangxiao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Key Lab Mol Biophys,Chinese Minist Educ, Genet Engn Int Cooperat Base Chinese Minist Sci &, Luoyu Rd 1037, Wuhan 430074, Hubei, Peoples R China
关键词
BdMKK6.2; Reactive oxygen species; Drought stress; Brachypodium distachyon; Transgenic tobacco plants; PROTEIN-KINASE KINASE; SALT STRESS; SIGNALING PATHWAY; OSMOTIC-STRESS; ABSCISIC-ACID; CELL-DEATH; MAIZE; IDENTIFICATION; ACTIVATION; OVEREXPRESSION;
D O I
10.1007/s00344-015-9512-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant MAPK cascades have been implicated in various developmental processes and in response to stresses. MAPKKs, a convergent linking point between MAPKKKs and MAPKs, play pivotal roles in MAPK cascades to regulate various stress responses in plants. Few MAPKKs have been functionally characterized in Brachypodium distachyon, a new monocot model plant. In this study, we cloned and characterized a group A MAPKK gene, designated as BdMKK6.2, from B. distachyon. Quantitative RT-PCR analysis revealed that BdMKK6.2 expression was upregulated by cold, heat, and H2O2 treatments but downregulated by PEG and ABA treatments. Transient expression of BdMKK6.2 in onion epidermal cells suggested that it was exclusively localized in the cytoplasm. Overexpression of BdMKK6.2 in transgenic tobacco plants increased their sensitivity to osmotic stress during seed germination. Moreover, BdMKK6.2 overexpression resulted in reduced tolerance to drought stress. Physiological-biochemical analyses showed that BdMKK6.2-overexpressing plants had decreased survival rates but increased water loss rates, ion leakage, malondialdehyde content, and reactive oxygen species accumulation under drought condition. In addition, the transcriptional levels of two ROS-producing genes NtRbohD and NtRbohF were upregulated, but a stress-responsive gene NtNCED1 was downregulated in BdMKK6.2-overexpressing plants compared to wild type plants. These results indicate that BdMKK6.2 is a negative regulator of drought stress response through influencing ROS homeostasis and transcription of stress-responsive gene.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [1] A Brachypodium distachyon MAPKK Gene BdMKK6.2 Negatively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants
    Jiutong Sun
    Run Zhou
    Yaping Li
    Wei Hu
    Ding Qiu
    Xiatian Wang
    Qiong Wang
    Zhijuan Feng
    Lianzhe Wang
    Yi Zhou
    Guangyuan He
    Guangxiao Yang
    Journal of Plant Growth Regulation, 2016, 35 : 121 - 134
  • [2] The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants
    Jiutong Sun
    Wei Hu
    Run Zhou
    Lianzhe Wang
    Xiatian Wang
    Qiong Wang
    Zhijuan Feng
    Yaping Li
    Ding Qiu
    Guangyuan He
    Guangxiao Yang
    Plant Cell Reports, 2015, 34 : 23 - 35
  • [3] The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants
    Sun, Jiutong
    Hu, Wei
    Zhou, Run
    Wang, Lianzhe
    Wang, Xiatian
    Wang, Qiong
    Feng, Zhijuan
    Li, Yaping
    Qiu, Ding
    He, Guangyuan
    Yang, Guangxiao
    PLANT CELL REPORTS, 2015, 34 (01) : 23 - 35
  • [4] The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco
    Huang, Gang
    Wan, Renjing
    Zou, Liping
    Ke, Jie
    Zhou, Lihong
    Tan, Shenglong
    Li, Tiantian
    Chen, Lihong
    PLANT CELL REPORTS, 2024, 43 (06)
  • [5] A Member of the 14-3-3 Gene Family in Brachypodium distachyon, BdGF14d, Confers Salt Tolerance in Transgenic Tobacco Plants
    He, Yuan
    Zhang, Yang
    Chen, Lihong
    Wu, Chunlai
    Luo, Qingchen
    Zhang, Fan
    Wei, Qiuhui
    Li, Kexiu
    Chang, Junli
    Yang, Guangxiao
    He, Guangyuan
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [6] A Novel Stress-Induced Sugarcane Gene Confers Tolerance to Drought, Salt and Oxidative Stress in Transgenic Tobacco Plants
    Begcy, Kevin
    Mariano, Eduardo D.
    Gentile, Agustina
    Lembke, Carolina G.
    Zingaretti, Sonia Marli
    Souza, Glaucia M.
    Menossi, Marcelo
    PLOS ONE, 2012, 7 (09):
  • [7] The Tomato WRKY Transcription Factor SlWRKY17 Positively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants
    Li, W.
    Li, D. H.
    Li, H. Y.
    Wang, M. C.
    Wang, Z.
    Liu, J. H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2022, 69 (07)
  • [8] The Tomato WRKY Transcription Factor SlWRKY17 Positively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants
    W. Li
    D. H. Li
    H. Y. Li
    M. C. Wang
    Z. Wang
    J. H. Liu
    Russian Journal of Plant Physiology, 2022, 69
  • [9] The Arabidopsis expansin gene (AtEXPA18) is capable to ameliorate drought stress tolerance in transgenic tobacco plants
    Alireza Abbasi
    Meysam Malekpour
    Sajjad Sobhanverdi
    Molecular Biology Reports, 2021, 48 : 5913 - 5922
  • [10] The Arabidopsis expansin gene (AtEXPA18) is capable to ameliorate drought stress tolerance in transgenic tobacco plants
    Abbasi, Alireza
    Malekpour, Meysam
    Sobhanverdi, Sajjad
    MOLECULAR BIOLOGY REPORTS, 2021, 48 (08) : 5913 - 5922