Application of neural network based fuzzy logic control in the network congestion control

被引:0
|
作者
Yin Feng-jie [1 ]
Jing Yuan-wei [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
来源
PROCEEDINGS OF 2005 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1 AND 2 | 2005年
关键词
neural network; fuzzy logic control; congestion control; adaptation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A active queue management (AQM) scheme is presented to provide congestion control using the combination of neural network and fuzzy logic control approach. The proposed method allows neural network to achieve fuzzy logic reasoning, which can adjust the membership function parameters and weights adaptively, and optimize the fuzzy logic controller. Simulation results demonstrate that it can lead to the convergence of the queue length to the desired value quickly and maintain the small oscillation. So, the scheme has better performace and robustness than the traditional PD controllers.
引用
收藏
页码:1291 / 1294
页数:4
相关论文
共 7 条
  • [1] FLOGD S, 1993, IEEE ACM T NETWORK, V1, P397
  • [2] Analysis and design of controllers for AQM routers supporting TCP flows
    Hollot, CV
    Misra, V
    Towsley, D
    Gong, WB
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (06) : 945 - 959
  • [3] Hollot CV, 2001, IEEE DECIS CONTR P, P2309, DOI 10.1109/CDC.2001.980604
  • [4] Hollot CV, 2001, IEEE INFOCOM SER, P1726, DOI 10.1109/INFCOM.2001.916670
  • [5] Hollot CV, 2001, IEEE INFOCOM SER, P1510, DOI 10.1109/INFCOM.2001.916647
  • [6] Kumar M., 2004, PROCEEDINGS, P1
  • [7] LU WJ, 1999, J TSINGHUA U SCI TEC, V39, P1