Uniform Convergence Analysis of a Higher Order Hybrid Stress Quadrilateral Finite Element Method for Linear Elasticity Problems

被引:19
作者
Bai, Yanhong [1 ]
Wu, Yongke [2 ,3 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[3] China Acad Engn Phys, Inst Struct Mech, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear elasticity; hybrid stress finite element; Poisson-locking; second-order accuracy; RATIONAL APPROACH; HIGH-PERFORMANCE; FORMULATION; STIFFNESS; MODES;
D O I
10.4208/aamm.2014.m548
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper derives a higher order hybrid stress finite element method on quadrilateral meshes for linear plane elasticity problems. The method employs continuous piecewise bi-quadratic functions in local coordinates to approximate the displacement vector and a piecewise-independent 15-parameter mode to approximate the stress tensor. Error estimation shows that the method is free from Poisson-locking and has second-order accuracy in the energy norm. Numerical experiments confirm the theoretical results.
引用
收藏
页码:399 / 425
页数:27
相关论文
共 50 条
[31]   A mixed generalized multiscale finite element method for planar linear elasticity [J].
Chung, Eric T. ;
Lee, Chak Shing .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 :298-313
[32]   High-dimensional finite element method for multiscale linear elasticity [J].
Xia, Bingxing ;
Hoang, Viet Ha .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) :1277-1314
[33]   Primal stabilized hybrid and DG finite element methods for the linear elasticity problem [J].
Faria, Cristiane O. ;
Loula, Abimael F. D. ;
dos Santos, Antonio J. B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (04) :486-507
[34]   A locking-free finite difference method on staggered grids for linear elasticity problems [J].
Rui, Hongxing ;
Sun, Ming .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (06) :1301-1320
[35]   Acoustic analysis using a mass-redistributed smoothed finite element method with quadrilateral mesh [J].
He, Zhicheng ;
Li, Guangyao ;
Zhang, Guiyong ;
Liu, Gui-Rong ;
Gu, Yuantong ;
Li, Eric .
ENGINEERING COMPUTATIONS, 2015, 32 (08) :2292-2317
[36]   HIGHER-ORDER FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES [J].
Guzman, Johnny ;
Sanchez, Manuel A. ;
Sarkis, Marcus .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05) :1561-1583
[37]   A MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD FOR ELASTICITY ON SIMPLICIAL GRIDS [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Nordbotten, Jan M. ;
Yotov, Ivan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) :630-656
[38]   On the Superconvergence of a Conforming Mixed Finite Element for Linear Elasticity on Uniform n-Square Grids [J].
Man, Hongying ;
Zhang, Shangyou .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
[39]   Unlocking the secrets of locking: Finite element analysis in planar linear elasticity [J].
Ainsworth, Mark ;
Parker, Charles .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
[40]   A nonlocal operator method for finite deformation higher-order gradient elasticity [J].
Ren, Huilong ;
Zhuang, Xiaoying ;
Trung, Nguyen-Thoi ;
Rabczuk, Timon .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384