Localization in infinite billiards: A comparison between quantum and classical ergodicity

被引:3
作者
Graffi, S
Lenci, M
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
关键词
ergodicity; quantum ergodicity; quantum chaos; localization; non-compact billiards; cusps;
D O I
10.1023/B:JOSS.0000037218.05161.f3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider the non-compact billiard in the first quandrant bounded by the positive x-semiaxis, the positive y-semiaxis and the graph of f(x) = (x + 1)(-a), alpha is an element of (1, 2). Although the Schnirelman Theorem holds, the quantum average of the position x is finite on any eigenstate, while classical ergodicity entails that the classical time average of x is unbounded.
引用
收藏
页码:821 / 830
页数:10
相关论文
共 24 条
[21]   Semiclassical limits for the hyperbolic plane [J].
Wolpert, SA .
DUKE MATHEMATICAL JOURNAL, 2001, 108 (03) :449-509
[22]   Ergodicity of eigenfunctions for ergodic billiards [J].
Zelditch, S ;
Zworski, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (03) :673-682
[23]   UNIFORM-DISTRIBUTION OF EIGENFUNCTIONS ON COMPACT HYPERBOLIC SURFACES [J].
ZELDITCH, S .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :919-941
[24]   MEAN LINDELOF HYPOTHESIS AND EQUIDISTRIBUTION OF CUSP FORMS AND EISENSTEIN SERIES [J].
ZELDITCH, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 97 (01) :1-49