Localization in infinite billiards: A comparison between quantum and classical ergodicity

被引:3
作者
Graffi, S
Lenci, M
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
关键词
ergodicity; quantum ergodicity; quantum chaos; localization; non-compact billiards; cusps;
D O I
10.1023/B:JOSS.0000037218.05161.f3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider the non-compact billiard in the first quandrant bounded by the positive x-semiaxis, the positive y-semiaxis and the graph of f(x) = (x + 1)(-a), alpha is an element of (1, 2). Although the Schnirelman Theorem holds, the quantum average of the position x is finite on any eigenstate, while classical ergodicity entails that the classical time average of x is unbounded.
引用
收藏
页码:821 / 830
页数:10
相关论文
共 24 条
[1]   Entropy of quantum limits [J].
Bourgain, J ;
Lindenstrauss, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (01) :153-171
[2]  
Davies E. B., 1992, GEOM FUNCT ANAL, V2, P105, DOI DOI 10.1007/BF01895707
[3]   TRACE PROPERTIES OF THE DIRICHLET LAPLACIAN [J].
DAVIES, EB .
MATHEMATISCHE ZEITSCHRIFT, 1985, 188 (02) :245-251
[4]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497
[5]   CLASSICAL LIMIT OF THE QUANTIZED HYPERBOLIC TORAL AUTOMORPHISMS [J].
ESPOSTI, MD ;
GRAFFI, S ;
ISOLA, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) :471-507
[6]   ERGODICITY AND SEMICLASSICAL LIMITS [J].
HELFFER, B ;
MARTINEZ, A ;
ROBERT, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (02) :313-326
[7]   Escape orbits for non-compact flat billiards [J].
Lenci, M .
CHAOS, 1996, 6 (03) :428-431
[8]   Semidispersing billiards with an infinite cusp. II [J].
Lenci, M .
CHAOS, 2003, 13 (01) :105-111
[9]   Semi-dispersing billiards with an infinite cusp I [J].
Lenci, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) :133-180
[10]   On quantum unique ergodicity for Γ\H x H [J].
Lindenstrauss, E .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (17) :913-933