High density hexagonal nickel nanowire arrays with 65 and 100 nm-PERIOD

被引:0
|
作者
Nielsch, K [1 ]
Wehrspohn, RB [1 ]
Fischer, SF [1 ]
Kronmüller, H [1 ]
Barthel, J [1 ]
Kirschner, J [1 ]
Schweinböck, T [1 ]
Weiss, D [1 ]
Gösele, U [1 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle An Der Saale, Germany
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Highly ordered alumina pore channel arrays are used as templates for the fabrication of magnetic nanowire arrays. These well-defined templates are based on the approach by Masuda and Fukuda and have an interpore distance of 65 and 100 nm and a monodisperse pore diameter of approximate to30 nm. The pore channels are hexagonally arranged in 2D-domains, which extend over more than ten interpore distances. Nearly 100% metal filling of the alumina pore structures is obtained by a novel pulsed electrodeposition technique. Due to the high ordering degree of the nanowires arrays, we detect a squareness of approximate to100% and coercive fields of 1200 Oe in the direction of the nanowires. The MFM measurements have been carried out by applying magnetic fields on magnetized and demagnetized samples to study the switching behavior of individual nanowires inside the arrays. Magnetic wires have been locally switched by a strong MFM tip and a variable external magnetic field. The MFM results show a good agreement with the bulk magnetic hysteresis loops.
引用
收藏
页码:327 / 332
页数:6
相关论文
共 50 条
  • [1] Hexagonally ordered 100 nm period nickel nanowire arrays
    Nielsch, K
    Wehrspohn, RB
    Barthel, J
    Kirschner, J
    Gösele, U
    Fischer, SF
    Kronmüller, H
    APPLIED PHYSICS LETTERS, 2001, 79 (09) : 1360 - 1362
  • [2] High density hexagonal nickel nanowire array
    Nielsch, K
    Wehrspohn, RB
    Barthel, J
    Kirschner, J
    Fischer, SF
    Kronmüller, H
    Schweinböck, T
    Weiss, D
    Gösele, U
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 249 (1-2) : 234 - 240
  • [3] High-density nickel nanowire arrays for data storage applications
    Samardak, A. S.
    Sukovatitsina, E. V.
    Ognev, A. V.
    Chebotkevich, L. A.
    Mahmoodi, R.
    Peighambari, S. M.
    Hosseini, M. G.
    Nasirpouri, F.
    IV NANOTECHNOLOGY INTERNATIONAL FORUM (RUSNANOTECH 2011), 2012, 345
  • [4] Formation of ordered arrays of metal clusters by annealing of nm-period metal-carbon multilayer films
    Sewing, A
    Gorbunov, AA
    Pompe, W
    Dietsch, R
    Mai, H
    Krawietz, R
    Wehner, B
    NANOSTRUCTURED MATERIALS, 1995, 6 (5-8): : 695 - 698
  • [5] Magnetic behavior of NixFe(100-x) (65≤x≤100) nanowire arrays
    Navas, D
    Asenjo, A
    Jaafar, M
    Pirota, KR
    Hernández-Vélez, M
    Sanz, R
    Lee, W
    Niesch, K
    Batallán, F
    Vázquez, M
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 : 191 - 194
  • [6] Modelling of hysteresis loops of arrays of 100 nm period nanomagnets
    Ross, CA
    Savas, TA
    Smith, HI
    Hwang, M
    Chantrell, R
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) : 3781 - 3783
  • [7] High-density arrays of germanium nanowire photoresistors
    Polyakov, Boris
    Daly, Brian
    Prikulis, Juris
    Lisauskas, Vaclovas
    Vengalis, Bonifacas
    Morris, Michael A.
    Holmes, Justin D.
    Erts, Donats
    ADVANCED MATERIALS, 2006, 18 (14) : 1812 - +
  • [8] Ordered High-Density Si [100] Nanowire Arrays Epitaxially Grown by Bottom Imprint Method
    Zhang, Zhang
    Shimizu, Tomohiro
    Senz, Stephan
    Goesele, Ulrich
    ADVANCED MATERIALS, 2009, 21 (27) : 2824 - +
  • [9] High-density gold nanowire arrays by lithographically patterned nanowire electrodeposition
    Hujdic, Justin E.
    Sargisian, Alan P.
    Shao, Jingru
    Ye, Tao
    Menke, Erik J.
    NANOSCALE, 2011, 3 (07) : 2697 - 2699
  • [10] Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst
    Xu, Kun
    Ding, Hui
    Jia, Kaicheng
    Lu, Xiuli
    Chen, Pengzuo
    Zhou, Tianpei
    Cheng, Han
    Liu, Si
    Wu, Changzheng
    Xie, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) : 1710 - 1713