Double operator integrals

被引:59
作者
de Pagter, B
Witvliet, H
Sukochev, FA
机构
[1] Delft Univ Technol, Dept Math, Fac ITS, NL-2600 GA Delft, Netherlands
[2] Flinders Univ S Australia, Dept Math & Stat, Sch Informat & Engn, Bedford Pk, SA 5042, Australia
关键词
D O I
10.1006/jfan.2001.3898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with perturbation formulae of the form parallel tof(a) - f(b)parallel to(Lp(M,tau))less than or equal toKparallel toa - bparallel to(Lp(M,tau)) with K > 0 being a constant depending on p and f only, where f is a real-valued Lipschitz function and a, b are self-adjoint tau-measurable operators affiliated with a semifinite von Neumann algebra (M, tau), such that the difference a - b belongs to Lp(M, tau), 1 < p < infinity. In order to treat the situation where the von Neumann algebra ,H is not necessarily hyperfinite, we first develop an integration theory with respect to finitely additive spectral measures in a Banach space. Applied to product measures this integration theory may be considered as an abstract version of the double operator integrals due to Birman and Solomyak. To describe the class of integrable functions we employ our recent study of multiplier theory in UMD-spaces. Our perturbation formulae extend those of Davies and Birman-Solomyak for the case when M is a hyperfinite I-x-factor (i.e., for the Schatten p-classes). We also discuss analogous perturbation results in the setting of symmetric operator spaces associated with (M, tau). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:52 / 111
页数:60
相关论文
共 34 条
[11]  
DALECKII YL, 1951, DOKL AKAD NAUK SSSR, V76, P13
[12]   LIPSCHITZ CONTINUITY OF FUNCTIONS OF OPERATORS IN THE SCHATTEN CLASSES [J].
DAVIES, EB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 :148-157
[13]  
de Pagter B, 2000, OPER THEORY ADV APPL, V124, P505
[14]  
DEFRANCIA JL, 1986, PROBABILITY BANACH S, P195
[15]  
Diestel J., 1977, VECTOR MEASURES
[16]   NON-COMMUTATIVE BANACH FUNCTION-SPACES [J].
DODDS, PG ;
DODDS, TKY ;
DEPAGTER, B .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (04) :583-597
[17]   FULLY SYMMETRICAL OPERATOR-SPACES [J].
DODDS, PG ;
DODDS, TK ;
DEPAGTER, B .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (06) :942-972
[18]   A UNIFORM KADEC-KLEE PROPERTY FOR SYMMETRICAL OPERATOR-SPACES [J].
DODDS, PG ;
DODDS, TK ;
DOWLING, PN ;
LENNARD, CJ ;
SUKOCHEV, FA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 118 :487-502
[19]   Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces [J].
Dodds, PG ;
Dodds, TK ;
dePagter, B ;
Sukochev, FA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (01) :28-69
[20]   NONCOMMUTATIVE KOTHE DUALITY [J].
DODDS, PG ;
DODDS, TKY ;
DEPAGTER, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :717-750