On the limits of validity of nonparaxial propagation equations in Kerr media

被引:13
作者
Ciattoni, Alessandro [1 ]
Crosignani, Bruno
Di Porto, Paolo
Scheuer, Jacob
Yariv, Amnon
机构
[1] CNR, CASTI Reg Lab, I-67010 Coppito, Italy
[2] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Italy
[3] Ist Nazl Fis Mat, UdR Roma La Sapienza, I-00185 Rome, Italy
[4] CALTECH, Pasadena, CA 91125 USA
来源
OPTICS EXPRESS | 2006年 / 14卷 / 12期
关键词
D O I
10.1364/OE.14.005517
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent generalizations of the standard nonlinear Schroedinger equation (NLSE), aimed at describing nonparaxial propagation in Kerr media are examined. An analysis of their limitations, based on available exact results for transverse electric (TE) and transverse magnetic (T M) (1+1)-D spatial solitons, is presented. Numerical stability analysis reveals that nonparaxial TM soltions are unstable to perturbations and tend to catastrophically collapse while TE solitons are stable even in the extreme nonparaxial limit. (c) 2006 Optical Society of America.
引用
收藏
页码:5517 / 5523
页数:7
相关论文
共 9 条
  • [1] Nonparaxial dark solitons in optical Kerr media
    Ciattoni, A
    Crosignani, B
    Mookherjea, S
    Yariv, A
    [J]. OPTICS LETTERS, 2005, 30 (05) : 516 - 518
  • [2] Perfect optical solitons: spatial Kerr solitons as exact solutions of Maxwell's equations
    Ciattoni, A
    Crosignani, B
    Di Porto, P
    Yariv, A
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (07) : 1384 - 1394
  • [3] Polarization and energy dynamics in ultrafocused optical Kerr propagation
    Ciattoni, A
    Conti, C
    DelRe, E
    Di Porto, P
    Crosignani, B
    Yariv, A
    [J]. OPTICS LETTERS, 2002, 27 (09) : 734 - 736
  • [4] Fourier analysis of non-paraxial self-focusing
    de la Fuente, R
    Varela, O
    Michinel, H
    [J]. OPTICS COMMUNICATIONS, 2000, 173 (1-6) : 403 - 411
  • [5] Vectorial and random effects in self-focusing and in multiple filamentation
    Fibich, G
    Ilan, B
    [J]. PHYSICA D, 2001, 157 (1-2): : 112 - 146
  • [6] Self-guided waves and exact solutions of the nonlinear Helmholtz equation
    Laine, TA
    Friberg, AT
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (05) : 751 - 757
  • [7] MAXWELL TO PARAXIAL WAVE OPTICS
    LAX, M
    LOUISELL, WH
    MCKNIGHT, WB
    [J]. PHYSICAL REVIEW A, 1975, 11 (04): : 1365 - 1370
  • [8] Self-consistent treatment of the full vectorial nonlinear optical pulse propagation equation in an isotropic medium
    Matuszewski, M
    Wasilewski, W
    Trippenbach, M
    Band, YB
    [J]. OPTICS COMMUNICATIONS, 2003, 221 (4-6) : 337 - 351
  • [9] Taflove A., 1995, Computational Electrodynamics: the Finite-Difference Time-Domain Method