Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data

被引:389
作者
Grootswagers, Tijl [1 ,2 ,3 ]
Wardle, Susan G. [1 ,2 ]
Carlson, Thomas A. [2 ,3 ]
机构
[1] Macquarie Univ, Sydney, NSW, Australia
[2] ARC Ctr Excellence Cognit & Its Disorders, Sydney, NSW, Australia
[3] Univ Sydney, Sydney, NSW, Australia
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
FREE CLUSTER-ENHANCEMENT; FALSE DISCOVERY RATE; HUMAN VISUAL-CORTEX; OBJECT RECOGNITION; SPATIOTEMPORAL DYNAMICS; CIRCULAR ANALYSIS; EEG-ANALYSIS; CLASSIFICATION; REPRESENTATIONS; INFORMATION;
D O I
10.1162/jocn_a_01068
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisionsmade at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.
引用
收藏
页码:677 / 697
页数:21
相关论文
共 120 条
[1]   fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli [J].
Alink, Arjen ;
Krugliak, Alexandra ;
Walther, Alexander ;
Kriegeskorte, Nikolaus .
FRONTIERS IN PSYCHOLOGY, 2013, 4
[2]   Valid population inference for information-based imaging: From the second-level t-test to prevalence inference [J].
Allefeld, Carsten ;
Goergen, Kai ;
Haynes, John-Dylan .
NEUROIMAGE, 2016, 141 :378-392
[3]   Brain-computer interface systems: progress and prospects [J].
Allison, Brendan Z. ;
Wolpaw, Elizabeth Winter ;
Wolpaw, Andjonothan R. .
EXPERT REVIEW OF MEDICAL DEVICES, 2007, 4 (04) :463-474
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]  
Bennett C.M., 2010, Journal of Serendipitous and Unexpected Results, V1, P1, DOI DOI 10.1016/S1053-8119(09)71202-9
[6]   The principled control of false positives in neuroimaging [J].
Bennett, Craig M. ;
Wolford, George L. ;
Miller, Michael B. .
SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2009, 4 (04) :417-422
[7]  
Bishop Christopher M., 2006, Pattern Recognition and Machine Learning, V4
[8]   Single-trial analysis and classification of ERP components - A tutorial [J].
Blankertz, Benjamin ;
Lemm, Steven ;
Treder, Matthias ;
Haufe, Stefan ;
Mueller, Klaus-Robert .
NEUROIMAGE, 2011, 56 (02) :814-825
[9]   Predicting Perceptual Decision Biases from Early Brain Activity [J].
Bode, Stefan ;
Sewell, David K. ;
Lilburn, Simon ;
Forte, Jason D. ;
Smith, Philip L. ;
Stahl, Jutta .
JOURNAL OF NEUROSCIENCE, 2012, 32 (36) :12488-12498
[10]   The psychophysics toolbox [J].
Brainard, DH .
SPATIAL VISION, 1997, 10 (04) :433-436