Archaeal Histone Contributions to the Origin of Eukaryotes

被引:32
作者
Brunk, Clifford F. [1 ,2 ]
Martin, William F. [3 ]
机构
[1] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Mol Biol Inst, Los Angeles, CA USA
[3] Heinrich Heine Univ Duesseldorf, Inst Mol Evolut, Dusseldorf, Germany
基金
欧洲研究理事会;
关键词
CHROMATIN-STRUCTURE; CELL-CYCLE; EMERGING ROLES; DNA-BINDING; EVOLUTION; GENOME; MITOCHONDRIA; ARCHAEBACTERIA; ACETYLATION; PHYLOGENY;
D O I
10.1016/j.tim.2019.04.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eukaryotic lineage arose from bacterial and archaeal cells that underwent a symbiotic merger. At the origin of the eukaryote lineage, the bacterial partner contributed genes, metabolic energy, and the building blocks of the endomembrane system. What did the archaeal partner donate that made the eukaryotic experiment a success? The archaeal partner provided the potential for complex information processing. Archaeal histones were crucial in that regard by providing the basic functional unit with which eukaryotes organize DNA into nucleosomes, exert epigenetic control of gene expression, transcribe genes with CCAAT-box promoters, and a manifest cell cycle with condensed chromosomes. While mitochondrial energy lifted energetic constraints on eukaryotic protein production, histone-based chromatin organization paved the path to eukaryotic genome complexity, a critical hurdle en route to the evolution of complex cells.
引用
收藏
页码:703 / 714
页数:12
相关论文
共 109 条
[1]  
[Anonymous], 2016, Molecular and Genome Evolution
[2]  
[Anonymous], 1986, The Vital Force: A Study of Bioenergetics
[3]   Emerging roles for chromatin as a signal integration and storage platform [J].
Badeaux, Aimee I. ;
Shi, Yang .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2013, 14 (04) :211-224
[4]   DNA replication in the archaea [J].
Barry, Elizabeth R. ;
Bell, Stephen D. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2006, 70 (04) :876-+
[5]   The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation [J].
Beckwith, Sean L. ;
Schwartz, Erin K. ;
Garcia-Nieto, Pablo E. ;
King, Devin A. ;
Gowans, Graeme J. ;
Wong, Ka Man ;
Eckley, Tessa L. ;
Paraschuk, Alexander P. ;
Peltan, Egan L. ;
Lee, Laura R. ;
Yao, Wei ;
Morrison, Ashby J. .
PLOS GENETICS, 2018, 14 (02)
[6]   Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin [J].
Betts, Holly C. ;
Puttick, Mark N. ;
Clark, James W. ;
Williams, Tom A. ;
Donoghue, Philip C. J. ;
Pisani, Davide .
NATURE ECOLOGY & EVOLUTION, 2018, 2 (10) :1556-1562
[7]  
Blackstone Neil W., 2016, Biology-Basel, V5, P18, DOI 10.3390/biology5020018
[8]   Eukaryogenesis, how special really? [J].
Booth, Austin ;
Doolittle, W. Ford .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (33) :10278-10285
[9]   WEIGHT MATRIX DESCRIPTIONS OF 4 EUKARYOTIC RNA POLYMERASE-II PROMOTER ELEMENTS DERIVED FROM 502 UNRELATED PROMOTER SEQUENCES [J].
BUCHER, P .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 212 (04) :563-578
[10]   Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic [J].
Burns, John A. ;
Pittis, Alexandros A. ;
Kim, Eunsoo .
NATURE ECOLOGY & EVOLUTION, 2018, 2 (04) :697-704