On homogeneous Finsler spaces

被引:17
作者
Latifi, Dariush [1 ]
Razavi, Asadollah [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
Finsler homogeneous space; symmetric space; forward completeness; Randers space; flag curvature;
D O I
10.1016/S0034-4877(06)80026-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study homogeneous Finsler spaces and show that they are forward complete. As a special case we consider homogeneous Randers spaces and show that if these spaces have constant flag curvature then the underlying Riemannian space is locally symmetric. Also we extend some of classical results in Riemannian homogeneous spaces to those in homogeneous Finsler spaces.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1969, SYMMETRIC SPACES
[2]  
Antonelli P.L., 1993, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, V58
[3]  
BAO D, 2000, INTRO RIEMANNFINSLER, V200
[4]   Invariant randers metrics on homogeneous riemannian manifolds [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15) :4353-4360
[5]   The group of isometries of a Finsler space [J].
Deng, SQ ;
Hou, ZX .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (01) :149-155
[6]   Invariant Finsler metrics on homogeneous manifolds [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34) :8245-8253
[7]  
Helgason S., 1979, Differential geometry, Lie groups and symmetric spaces
[8]  
Kobayashi S., 1969, Foundation of differential geometry, VII
[9]  
LATIFI D, 2004, P 3 SEM GEOM TOP AZ, P231
[10]  
Szabo Z. I., 1981, TENSOR, V35, P25