Cells Actively Stiffen Fibrin Networks by Generating Contractile Stress

被引:136
作者
Jansen, Karin A. [1 ]
Bacabac, Rommel G. [1 ]
Piechocka, Izabela K. [1 ]
Koenderink, Gijsje H. [1 ]
机构
[1] FOM Inst AMOLF, Biol Soft Matter Grp, Amsterdam, Netherlands
关键词
EXTRACELLULAR-MATRIX; NONLINEAR ELASTICITY; COLLAGEN LATTICES; HUMAN-FIBROBLASTS; GEL CONTRACTION; CROSS-LINKING; COILED-COILS; FORCE; MECHANICS; TRACTION;
D O I
10.1016/j.bpj.2013.10.008
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
During wound healing and angiogenesis, fibrin serves as a provisional extracellular matrix. We use a model system of fibroblasts embedded in fibrin gels to study how cell-mediated contraction may influence the macroscopic mechanical properties of their extracellular matrix during such processes. We demonstrate by macroscopic shear rheology that the cells increase the elastic modulus of the fibrin gels. Microscopy observations show that this stiffening sets in when the cells spread and apply traction forces on the fibrin fibers. We further show that the stiffening response mimics the effect of an external stress applied by mechanical shear. We propose that stiffening is a consequence of active myosin-driven cell contraction, which provokes a nonlinear elastic response of the fibrin matrix. Cell-induced stiffening is limited to a factor 3 even though fibrin gels can in principle stiffen much more before breaking. We discuss this observation in light of recent models of fibrin gel elasticity, and conclude that the fibroblasts pull out floppy modes, such as thermal bending undulations, from the fibrin network, but do not axially stretch the fibers. Our findings are relevant for understanding the role of matrix contraction by cells during wound healing and cancer development, and may provide design parameters for materials to guide morphogenesis in tissue engineering.
引用
收藏
页码:2240 / 2251
页数:12
相关论文
共 109 条
[1]  
AKIYAMA SK, 1985, J BIOL CHEM, V260, P4492
[2]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[3]   PRODUCTION OF A TISSUE-LIKE STRUCTURE BY CONTRACTION OF COLLAGEN LATTICES BY HUMAN-FIBROBLASTS OF DIFFERENT PROLIFERATIVE POTENTIAL INVITRO [J].
BELL, E ;
IVARSSON, B ;
MERRILL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1274-1278
[4]   Flexible substrata for the detection of cellular traction forces [J].
Beningo, KA ;
Wang, YL .
TRENDS IN CELL BIOLOGY, 2002, 12 (02) :79-84
[5]   Effect of poisson ratio on cellular structure formation [J].
Bischofs, IB ;
Schwarz, US .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[6]   Cell organization in soft media due to active mechanosensing [J].
Bischofs, IB ;
Schwarz, US .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (16) :9274-9279
[7]   Filamentous network mechanics and active contractility determine cell and tissue shape [J].
Bischofs, Ilka B. ;
Klein, Franziska ;
Lehnert, Dirk ;
Bastmeyer, Martin ;
Schwarz, Ulrich S. .
BIOPHYSICAL JOURNAL, 2008, 95 (07) :3488-3496
[8]   Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking [J].
Bloom, Ryan J. ;
George, Jerry P. ;
Celedon, Alfredo ;
Sun, Sean X. ;
Wirtz, Denis .
BIOPHYSICAL JOURNAL, 2008, 95 (08) :4077-4088
[9]  
Broedersz C., 2011, ARXIV10093848
[10]   Measurement of nonlinear rheology of cross-linked biopolymer gels [J].
Broedersz, Chase P. ;
Kasza, Karen E. ;
Jawerth, Louise M. ;
Muenster, Stefan ;
Weitz, David A. ;
MacKintosh, Frederick C. .
SOFT MATTER, 2010, 6 (17) :4120-4127