Traveling Hot Spots in Plasmonic Photocatalysis: Manipulating Interparticle Spacing for Real-Time Control of Electron Injection

被引:19
作者
Negrin-Montecelo, Yoel [1 ,2 ]
Comesana-Hermo, Miguel [1 ,2 ]
Kong, Xiang-Tian [3 ,4 ]
Rodriguez-Gonzalez, Benito [1 ,2 ]
Wang, Zhiming [5 ,6 ]
Perez-Lorenzo, Moises [1 ,2 ]
Govorov, Alexander O. [3 ,4 ]
Correa-Duarte, Miguel A. [1 ,2 ]
机构
[1] Univ Vigo, Southern Galicia Inst Hlth Res IISGS, Dept Phys Chem, Ctr Biomed Res CINBIO, Vigo 36310, Spain
[2] Univ Vigo, Biomed Res Networking Ctr Mental Hlth CIBERSAM, Vigo 36310, Spain
[3] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
[4] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
[5] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[6] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
关键词
hot spots; nanoparticles; photocatalysis; plasmonics; thermoresponsive; RESONANCE ENERGY-TRANSFER; GOLD NANORODS; NANOSTRUCTURES; GENERATION; DIMERS;
D O I
10.1002/cctc.201702053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we introduce a novel approach to achieve real-time control over the hot-electron injection process in metal-semiconductor photocatalysts. Such functionality is attained through the design of a hybrid nanocomposite in which plasmonic Au nanorods and TiO2 nanoparticles are synergistically integrated with a thermoresponsive polymer. In this manner, modifying the temperature of the system allows 1) precise regulation of the interparticle distance between the catalyst and the plasmonic component and 2) the reversible formation of plasmonic hot spots on the semiconductor. Both features can be simultaneously exploited to modulate the injection of hot electrons, thus boosting/inhibiting at will the photocatalytic activity of these heterostructures. This innovative conception enables dynamically adjustable performance of semiconductors, hence opening the door to the development of a new generation of plasmon-operated photocatalytic devices.
引用
收藏
页码:1561 / 1565
页数:5
相关论文
共 25 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Amplified Generation of Hot Electrons and Quantum Surface Effects in Nanoparticle Dimers with Plasmonic Hot Spots [J].
Besteiro, Lucas V. ;
Govorov, Alexander O. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (34) :19329-19339
[3]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
[4]   Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core-Shell Nanoparticles [J].
Cushing, Scott K. ;
Li, Jiangtian ;
Bright, Joeseph ;
Yost, Brandon T. ;
Zheng, Peng ;
Bristow, Alan D. ;
Wu, Nianqiang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28) :16239-16244
[5]   Gold Nanorod-pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties [J].
Fernandez-Lopez, Cristina ;
Polavarapu, Lakshminarayana ;
Solis, Diego M. ;
Taboada, Jose M. ;
Obelleiro, Fernando ;
Contreras-Caceres, Rafael ;
Pastoriza-Santos, Isabel ;
Perez-Juste, Jorge .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) :12530-12538
[6]   Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules [J].
Govorov, Alexander O. ;
Zhang, Hui ;
Gun'ko, Yurii K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (32) :16616-16631
[7]   Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts [J].
Ingram, David B. ;
Christopher, Phillip ;
Bauer, Jonathan L. ;
Linic, Suljo .
ACS CATALYSIS, 2011, 1 (10) :1441-1447
[8]   Interface-Engineered Plasmonics in Metal/Semiconductor Heterostructures [J].
Jia, Chuancheng ;
Li, Xinxi ;
Xin, Na ;
Gong, Yao ;
Guan, Jianxin ;
Meng, Linan ;
Meng, Sheng ;
Guo, Xuefeng .
ADVANCED ENERGY MATERIALS, 2016, 6 (17)
[9]   Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications [J].
Jiang, Ruibin ;
Li, Benxia ;
Fang, Caihong ;
Wang, Jianfang .
ADVANCED MATERIALS, 2014, 26 (31) :5274-5309
[10]   Nanorod-coated PNIPAM microgels:: Thermoresponsive optical properties [J].
Karg, Matthias ;
Pastoriza-Santos, Isabel ;
Perez-Juste, Jorge ;
Hellweg, Thomas ;
Liz-Marzan, Luis M. .
SMALL, 2007, 3 (07) :1222-1229