Properties of entropy and entanglement of two-mode nonlinear coherent states

被引:6
作者
Abdel-Aty, M [1 ]
El-Shahat, TM
Obada, ASF
机构
[1] S Valley Univ, Fac Sci, Dept Math, Sohag, Egypt
[2] Univ Flensburg, Int Math & Didaktik, D-29943 Flensburg, Germany
[3] Al Azhar Univ, Fac Sci, Dept Math, Assiut, Egypt
[4] Al Azhar Univ, Fac Sci, Dept Math, Nasr City, Cairo, Egypt
关键词
entropy; entanglement; nonlinear coherent states;
D O I
10.1088/0253-6102/38/6/715
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this communication, two-mode nonlinear coherent states are reviewed and special cases are given. Starting from a three-level atom coupled to two modes of radiation with any form of nonlinearities of the two-mode fields, we derive a Raman-coupled effective Hamiltonian by a unitary transformation, evaluated perturbatively in coupling constants. We use the quantum entropy to measure the degree of entanglement in the time development of an effective two-level atom interacting with two-mode nonlinear-coherent states. The results show that the nonlinearity effect yields the superstructure of atomic Rabi oscillations and the effect of the Stark shift changes the quasiperiod of the field entropy evolution and entanglement between the particle and the Field. A possible experimental test of a new effect is proposed.
引用
收藏
页码:715 / 728
页数:14
相关论文
共 68 条
[1]   Influence of a Kerr-like medium on the evolution of field entropy and entanglement in a three-level atom [J].
Abdel-Aty, M .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (14) :2665-2676
[2]   Pancharatnam phase of two-mode optical fields with Kerr nonlinearity [J].
Abdel-Aty, M ;
Abdel-Khalek, S ;
Obada, ASF .
OPTICAL REVIEW, 2000, 7 (06) :499-504
[4]   EIGENSTATES OF THE PHASE OPERATOR A-LA-DIRAC FOR A 2 MODE FIELD [J].
AGARWAL, GS .
OPTICS COMMUNICATIONS, 1993, 100 (5-6) :479-481
[5]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[6]   Coherent population trapping in laser spectroscopy [J].
Arimondo, E .
PROGRESS IN OPTICS, VOL XXXV, 1996, 35 :257-354
[7]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[8]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[9]   Observing the progressive decoherence of the ''meter'' in a quantum measurement [J].
Brune, M ;
Hagley, E ;
Dreyer, J ;
Maitre, X ;
Maali, A ;
Wunderlich, C ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (24) :4887-4890
[10]   Nonlinear coherent states [J].
deMatos, RL ;
Vogel, W .
PHYSICAL REVIEW A, 1996, 54 (05) :4560-4563