Flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composites

被引:2
|
作者
Choi, Jeong-Il [1 ]
Park, Se-Eon [2 ]
Kim, Yun Yong [3 ]
Lee, Bang Yeon [2 ,4 ]
机构
[1] Chonnam Natl Univ, Biohousing Res Ctr, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Dept Architecture & Civil Engn, Gwangju 61186, South Korea
[3] Chungnam Natl Univ, Dept Civil Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[4] Chonnam Natl Univ, Sch Architecture, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Analysis; Composite beam; Fiber-reinforced cementitious composite; Flexural behavior; Kagome truss; WIRE-WOVEN METAL; COMPRESSIVE BEHAVIOR; STRENGTH; DESIGN;
D O I
10.1016/j.conbuildmat.2022.129653
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents an experimental and analytical study of the flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composite (FRCC). Two types of FRCC-highly ductile (HD)-FRCC with a tensile ductility of 6.33 % and high-strength (HS)-FRCC with a compressive strength of 156.8 MPa-were designed. Three composite beams were manufactured. To investigate the flexural behavior of the beams, bending tests were performed. Test results showed that the flexural behavior of the Kagome truss composite beams was influenced by the types of FRCCs and reinforcement methods. The K-HS-HD beam reinforced at the tensile portion with HD-FRCC and at the compressive portion with HS-FRCC showed 4.5 and 4.9 times higher loadbearing capacities than those, respectively, of the K-HD and K-HS beams that were reinforced only at the tension region. While the analytical results and the experimental results were relatively consistent in the case of the beam reinforced with HD-FRCC, the analytical results were different from the experimental results in the nonlinear region in the case of the beam reinforced with HS-FRCC, due to local fracture of the material.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Flexural behavior of steel fiber-reinforced coal gangue aggregate concrete beams
    Cai, Bin
    Li, Kaiyi
    Fu, Feng
    STRUCTURES, 2023, 52 : 131 - 145
  • [32] Experimental and analytical study on shear behavior of strain-hardening cementitious composite beams reinforced with fiber-reinforced polymer bars
    Gu, Dawei
    Pan, Jinlong
    Lukovic, Mladena
    He, Jixuan
    STRUCTURAL CONCRETE, 2022, 23 (02) : 1080 - 1099
  • [33] Compressive and flexural properties of ultra-high performance fiber-reinforced cementitious composite: The effect of coarse aggregate
    Wu, Fanghong
    Xu, Lihua
    Chi, Yin
    Zeng, Yanqin
    Deng, Fangqian
    Chen, Qian
    COMPOSITE STRUCTURES, 2020, 236 (236)
  • [34] Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites
    Caggiano, Antonio
    Etse, Guillermo
    Martinelli, Enzo
    COMPUTERS & STRUCTURES, 2012, 98-99 : 23 - 32
  • [35] Tension and Cyclic Behavior of High-Performance Fiber-Reinforced Cementitious Composites
    Khlef, Feras L.
    Barbosa, Andre R.
    Ideker, Jason H.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (10)
  • [36] Impact resistance, flexural and tensile properties of amorphous metallic fiber-reinforced cementitious composites according to fiber length
    Lee, Sangkyu
    Kim, Gyuyong
    Kim, Hongseop
    Son, Minjae
    Choe, Gyeongcheol
    Kobayashi, Koichi
    Nam, Jeongsoo
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 271
  • [37] Bond behavior and interface modeling of reinforced high-performance fiber-reinforced cementitious composites
    Bandelt, Matthew J.
    Frank, Timothy E.
    Lepech, Michael D.
    Billington, Sarah L.
    CEMENT & CONCRETE COMPOSITES, 2017, 83 : 188 - 201
  • [38] Biaxial behavior of high-performance fiber-reinforced cementitious composite plates
    Foltz, Raymond R.
    Lee, Deuck Hang
    LaFave, James M.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 143 : 501 - 514
  • [39] Application of Graphene in Fiber-Reinforced Cementitious Composites: A Review
    Wu, Songmei
    Qureshi, Tanvir
    Wang, Guorui
    ENERGIES, 2021, 14 (15)
  • [40] Predicting the flexural behavior of steel-PVA hybrid fiber reinforced cementitious composite
    Wang, Zhaoyao
    Liang, Xingwen
    Zhai, Tianwen
    STRUCTURES, 2023, 51 : 1189 - 1204