Flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composites

被引:2
|
作者
Choi, Jeong-Il [1 ]
Park, Se-Eon [2 ]
Kim, Yun Yong [3 ]
Lee, Bang Yeon [2 ,4 ]
机构
[1] Chonnam Natl Univ, Biohousing Res Ctr, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Dept Architecture & Civil Engn, Gwangju 61186, South Korea
[3] Chungnam Natl Univ, Dept Civil Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[4] Chonnam Natl Univ, Sch Architecture, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Analysis; Composite beam; Fiber-reinforced cementitious composite; Flexural behavior; Kagome truss; WIRE-WOVEN METAL; COMPRESSIVE BEHAVIOR; STRENGTH; DESIGN;
D O I
10.1016/j.conbuildmat.2022.129653
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents an experimental and analytical study of the flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composite (FRCC). Two types of FRCC-highly ductile (HD)-FRCC with a tensile ductility of 6.33 % and high-strength (HS)-FRCC with a compressive strength of 156.8 MPa-were designed. Three composite beams were manufactured. To investigate the flexural behavior of the beams, bending tests were performed. Test results showed that the flexural behavior of the Kagome truss composite beams was influenced by the types of FRCCs and reinforcement methods. The K-HS-HD beam reinforced at the tensile portion with HD-FRCC and at the compressive portion with HS-FRCC showed 4.5 and 4.9 times higher loadbearing capacities than those, respectively, of the K-HD and K-HS beams that were reinforced only at the tension region. While the analytical results and the experimental results were relatively consistent in the case of the beam reinforced with HD-FRCC, the analytical results were different from the experimental results in the nonlinear region in the case of the beam reinforced with HS-FRCC, due to local fracture of the material.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Flexural behavior of reinforced concrete beams with high performance fiber reinforced cementitious composites
    Chidambaram, Siva R.
    Agarwal, Pankaj
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (09) : 2609 - 2622
  • [2] Flexural Behavior of Innovative Glass Fiber-Reinforced Composite Beams Reinforced with Gypsum-Based Composites
    Liu, Yiwen
    Su, Bo
    Zhang, Tianyu
    POLYMERS, 2024, 16 (23)
  • [3] Flexural response of hybrid fiber-reinforced cementitious composites
    Banthia, N
    Soleimani, SM
    ACI MATERIALS JOURNAL, 2005, 102 (06) : 382 - 389
  • [4] Fatigue and Flexural Behavior of Reinforced-Concrete Beams Strengthened with Fiber-Reinforced Cementitious Matrix
    Aljazaeri, Zena R.
    Myers, John J.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2017, 21 (01)
  • [5] Behavior of PVA Fiber-Reinforced Cementitious Composites under Static and Impact Flexural Effects
    Atahan, Hakan Nuri
    Pekmezci, Bekir Yilmaz
    Tuncel, Erman Yigit
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2013, 25 (10) : 1438 - 1445
  • [6] Investigation of the flexural behavior of reinforced concrete beams strengthened with a composite reinforcement layer: Polyvinyl alcohol fiber-reinforced ferrocement cementitious composite and steel wire mesh
    Du, Wenping
    Yang, Caiqian
    De Backer, Hans
    Wang, Chong
    Pan, Yong
    STRUCTURAL CONCRETE, 2023, 24 (01) : 1612 - 1626
  • [7] Investigating the Influence of Fiber Content and Geometry on the Flexural Response of Fiber-Reinforced Cementitious Composites
    Bzeni, Dillshad Khidhir
    JOURNAL OF COMPOSITES SCIENCE, 2024, 8 (09):
  • [8] Flexural behavior of natural fiber-reinforced foamed concrete beams
    Kusum Saini
    Saverio Spadea
    Vasant A. Matsagar
    Architecture, Structures and Construction, 2024, 4 (2-4): : 157 - 172
  • [9] Flexural Characteristics of Functionally Graded Fiber-Reinforced Cementitious Composite with Polyvinyl Alcohol Fiber
    Kanakubo, Toshiyuki
    Koba, Takumi
    Yamada, Kohei
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (04):
  • [10] Experimental and analytical study of the flexural behavior of basalt fiber-reinforced concrete beams
    Li, Zhihua
    Ma, Chengfei
    Guo, Xuan
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2342 - 2362