A note on a self-similar tiling generated by the minimal Pisot number

被引:3
作者
Luo, J [1 ]
机构
[1] Zhongshan Univ, Sch Math & Comp Sci, Guangzhou 510275, Peoples R China
关键词
self-similar tiling; Pisot number; attractor;
D O I
10.1142/S0218348X02001245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note considers a self-similar tiling T of the complex plane generated by the minimal Pisot number beta. It will show that the boundary of every tile in T is a simple closed curve, hence each tile is homeomorphic to the unit disk.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 1998, ACTA MATH INFORM U O
[2]   CLASSIFICATION OF SELF-AFFINE LATTICE TILINGS [J].
BANDT, C ;
GELBRITCH, G .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :581-593
[3]  
BANDT C, IN PRESS DISK LIKE S
[4]   CRYSTALLOGRAPHIC REPTILES [J].
GELBRICH, G .
GEOMETRIAE DEDICATA, 1994, 51 (03) :235-256
[5]   MULTIRESOLUTION ANALYSIS, HAAR BASES, AND SELF-SIMILAR TILINGS OF RN [J].
GROCHENIG, K ;
MADYCH, WR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :556-568
[6]  
Grochenig K., 1994, J FOURIER ANAL APPL, V1, P131, DOI DOI 10.1007/S00041-001-4007-6
[7]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[8]  
Kenyon R, 1992, CONT MATH, V135
[9]  
LUO J, IN PRESS FRACTALS
[10]  
Moise E. E., 1977, GEOMETRIC TOPOLOGY D