Model of SNARE-Mediated Membrane Adhesion Kinetics

被引:4
|
作者
Warner, Jason M.
Karatekin, Erdem
O'Shaughnessy, Ben
机构
[1] Department of Chemical Engineering, Columbia University, New York, NY
[2] Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique UPR 1929, Paris
来源
PLOS ONE | 2009年 / 4卷 / 08期
关键词
D O I
10.1371/journal.pone.0006375
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
SNARE proteins are conserved components of the core fusion machinery driving diverse membrane adhesion and fusion processes in the cell. In many cases micron-sized membranes adhere over large areas before fusion. Reconstituted in vitro assays have helped isolate SNARE mechanisms in small membrane adhesion-fusion and are emerging as powerful tools to study large membrane systems by use of giant unilamellar vesicles (GUVs). Here we model SNARE-mediated adhesion kinetics in SNARE-reconstituted GUV-GUV or GUV-supported bilayer experiments. Adhesion involves many SNAREs whose complexation pulls apposing membranes into contact. The contact region is a tightly bound rapidly expanding patch whose growth velocity nu(patch) increases with SNARE density Gamma(snare). We find three patch expansion regimes: slow, intermediate, fast. Typical experiments belong to the fast regime where nu(patch)similar to(Gamma(snare))(2/3) depends on SNARE diffusivities and complexation binding constant. The model predicts growth velocities similar to 10-300 mu m/s. The patch may provide a close contact region where SNAREs can trigger fusion. Extending the model to a simple description of fusion, a broad distribution of fusion times is predicted. Increasing SNARE density accelerates fusion by boosting the patch growth velocity, thereby providing more complexes to participate in fusion. This quantifies the notion of SNAREs as dual adhesion-fusion agents.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SNARE-Mediated Adhesion Kinetics in Giant Membrane Systems
    Warner, Jason M.
    Karatekin, Erdem
    O'Shaughnessy, Ben
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 358A - 358A
  • [2] A requirement for SNARE-mediated membrane traffic in cellular adhesion
    Skalski, M
    Lau, W
    Coppolino, MG
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 202A - 202A
  • [3] SNARE-mediated membrane fusion
    Yu A. Chen
    Richard H. Scheller
    Nature Reviews Molecular Cell Biology, 2001, 2 : 98 - 106
  • [4] Snare-mediated membrane fusion
    Chen, YA
    Scheller, RH
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (02) : 98 - 106
  • [5] Hemifusion in SNARE-mediated membrane fusion
    Yibin Xu
    Fan Zhang
    Zengliu Su
    James A McNew
    Yeon-Kyun Shin
    Nature Structural & Molecular Biology, 2005, 12 : 417 - 422
  • [6] Hemifusion in SNARE-mediated membrane fusion
    Xu, YB
    Zhang, F
    Su, ZL
    McNew, JA
    Shin, YK
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (05) : 417 - 422
  • [7] SNARE-mediated membrane fusion in autophagy
    Wang, Yongyao
    Li, Linsen
    Hou, Chen
    Lai, Ying
    Long, Jiangang
    Liu, Jiankang
    Zhong, Qing
    Diao, Jiajie
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2016, 60 : 97 - 104
  • [8] Regulation of SNARE-Mediated membrane fusion
    McNew, James
    Doneske, Blair
    Schaub, Johanna
    Rodkey, Travis
    BIOPHYSICAL JOURNAL, 2007, : 375A - 375A
  • [9] Variable cooperativity in SNARE-mediated membrane fusion
    Hernandez, Javier M.
    Kreutzberger, Alex J. B.
    Kiessling, Volker
    Tamm, Lukas K.
    Jahn, Reinhard
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (33) : 12037 - 12042
  • [10] Inhibition of SNARE-mediated membrane fusion by VARP
    Schafer, Ingmar B.
    Hesketh, Geoffrey G.
    Bright, Nicholas A.
    Luzio, J. Paul
    Owen, David J.
    Evans, Philip R.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C185 - C185