Nanocrystalline Diamond Integration with III-Nitride HEMTs

被引:39
|
作者
Anderson, T. J. [1 ]
Hobart, K. D. [1 ]
Tadjer, M. J. [1 ]
Koehler, A. D. [1 ]
Imhoff, E. A. [1 ]
Hite, J. K. [1 ]
Feygelson, T. I. [1 ]
Pate, B. B. [1 ]
Eddy, C. R., Jr. [1 ]
Kub, F. J. [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
关键词
ELECTRON-MOBILITY TRANSISTORS; ALGAN/GAN; NANODIAMOND; FILMS;
D O I
10.1149/2.0071702jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced performance in Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. To mitigate this effect, the incorporation of high thermal conductivity diamond heat spreading films or substrates has been proposed. A mid-process integration scheme, termed "gate-after-diamond," is shown to improve the thermal budget for NCD deposition and enables scalable, large-area diamond coating without degrading the Schottky gate metal. The optimization of this process step is presented in this work. Nanocrystalline (NCD)-capped devices had a 20% lower channel temperature at equivalent power dissipation. Improved electrical characteristics were also observed, notably improved on-resistance and breakdown voltage, and reduced gate leakage. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:Q3036 / Q3039
页数:4
相关论文
共 50 条
  • [41] Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes
    Oh, Munsik
    Jin, Won-Yong
    Jeong, Hyeon Jun
    Jeong, Mun Seok
    Kang, Jae-Wook
    Kim, Hyunsoo
    SCIENTIFIC REPORTS, 2015, 5
  • [42] First-Principles Study on III-Nitride Polymorphs: AlN/GaN/InN in the Pmn21 Phase
    Zhang, Zheren
    Chai, Changchun
    Zhang, Wei
    Song, Yanxing
    Kong, Linchun
    Yang, Yintang
    MATERIALS, 2020, 13 (14)
  • [43] Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions
    Kazan, M.
    Bruyant, A.
    Royer, P.
    Masri, P.
    SURFACE SCIENCE REPORTS, 2010, 65 (04) : 111 - 127
  • [44] A Remote-Oxygen-Plasma Surface Treatment Technique for III-Nitride Heterojunction Field-Effect Transistors
    Lee, Yi-Che
    Kao, Tsung-Ting
    Merola, Joseph J.
    Shen, Shyh-Chiang
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (02) : 493 - 497
  • [45] Superconducting Diamond on Silicon Nitride for Device Applications
    Bland, Henry A.
    Thomas, Evan L. H.
    Klemencic, Georgina M.
    Mandal, Soumen
    Morgan, David J.
    Papageorgiou, Andreas
    Jones, Tyrone G.
    Williams, Oliver A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [46] Diamond/GaN HEMTs: Where from and Where to?
    Mendes, Joana C.
    Liehr, Michael
    Li, Changhui
    MATERIALS, 2022, 15 (02)
  • [47] Polarity determination by electron energy-loss spectroscopy: application to ultra-small III-nitride semiconductor nanocolumns
    Kong, X.
    Ristic, J.
    Sanchez-Garcia, M. A.
    Calleja, E.
    Trampert, A.
    NANOTECHNOLOGY, 2011, 22 (41)
  • [48] Overview and Progress Toward High-Efficiency, Air Stable, Cs-Free III-Nitride Photocathode Detectors
    Rocco, Emma
    Marini, Jonathan
    Hogan, Kasey
    Meyers, Vincent
    McEwen, Benjamin
    Bell, L. Douglas
    Shahedipour-Sandvik, F.
    IEEE PHOTONICS JOURNAL, 2022, 14 (02):
  • [49] Free-standing semipolar III-nitride quantum well structures grown on chemical vapor deposited graphene layers
    Gupta, Priti
    Rahman, A. A.
    Hatui, Nirupam
    Parmar, Jayesh B.
    Chalke, Bhagyashree A.
    Bapat, Rudheer D.
    Purandare, S. C.
    Deshmukh, Mandar M.
    Bhattacharya, Arnab
    APPLIED PHYSICS LETTERS, 2013, 103 (18)
  • [50] Small- and Large-Signal Performance of III-Nitride RF Switches With Hybrid Fast/Slow Gate Design
    Sattu, Ajay Kumar
    Yang, Jinwei
    Gaska, Remis
    Khan, Md Bilal
    Shur, Michael
    Simin, Grigory
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (06) : 305 - 307