Nanocrystalline Diamond Integration with III-Nitride HEMTs

被引:39
|
作者
Anderson, T. J. [1 ]
Hobart, K. D. [1 ]
Tadjer, M. J. [1 ]
Koehler, A. D. [1 ]
Imhoff, E. A. [1 ]
Hite, J. K. [1 ]
Feygelson, T. I. [1 ]
Pate, B. B. [1 ]
Eddy, C. R., Jr. [1 ]
Kub, F. J. [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
关键词
ELECTRON-MOBILITY TRANSISTORS; ALGAN/GAN; NANODIAMOND; FILMS;
D O I
10.1149/2.0071702jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced performance in Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. To mitigate this effect, the incorporation of high thermal conductivity diamond heat spreading films or substrates has been proposed. A mid-process integration scheme, termed "gate-after-diamond," is shown to improve the thermal budget for NCD deposition and enables scalable, large-area diamond coating without degrading the Schottky gate metal. The optimization of this process step is presented in this work. Nanocrystalline (NCD)-capped devices had a 20% lower channel temperature at equivalent power dissipation. Improved electrical characteristics were also observed, notably improved on-resistance and breakdown voltage, and reduced gate leakage. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:Q3036 / Q3039
页数:4
相关论文
共 50 条
  • [31] Employment of III-Nitride/Silicon Heterostructures for Dual-Band UV/IR Photodiodes
    Pillai, R.
    Starikov, D.
    Boney, C.
    Bensaoula, A.
    GALLIUM NITRIDE MATERIALS AND DEVICES IV, 2009, 7216
  • [32] Employment of III-Nitride/Silicon Heterostructures for Dual-Band UV/IR Photodiodes
    Pillai, R.
    Starikov, D.
    Boney, C.
    Bensaoula, A.
    GALLIUM NITRIDE MATERIALS AND DEVICES IV, 2009, 7216
  • [33] Theoretical investigations of compositional inhomogeneity around threading dislocations in III-nitride semiconductor alloys
    Sakaguchi, Ryohei
    Akiyama, Toru
    Nakamura, Kohji
    Ito, Tomonori
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (05)
  • [34] Defect Propagation from 3C-SiC Intermediate Layers to III-Nitride Epilayers
    Abe, Yoshihisa
    Fujimori, Hiroyuki
    Watanabe, Arata
    Ohmori, Noriko
    Komiyama, Jun
    Suzuki, Shunichi
    Nakanishi, Hideo
    Egawa, Takashi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (03)
  • [35] Low-Loss and High-Voltage III-Nitride Transistors for Power Switching Applications
    Kuzuhara, Masaaki
    Tokuda, Hirokuni
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) : 405 - 413
  • [36] Polarization of emission from non-polar III-nitride quantum wells: the influence of confinement
    Arora, Ashish
    Ghosh, Sandip
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (04)
  • [37] 2-to 20-GHz Switch Using III-Nitride Capacitively Coupled Contact Varactors
    Jahan, F.
    Yang, Y-H
    Gaevski, M.
    Deng, J.
    Gaska, R.
    Shur, M.
    Simin, G.
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (02) : 208 - 210
  • [38] Improved breakdown characteristics of monolithically integrated III-nitride HEMT-LED devices using carbon doping
    Liu, Chao
    Liu, Zhaojun
    Huang, Tongde
    Ma, Jun
    Lau, Kei May
    JOURNAL OF CRYSTAL GROWTH, 2015, 414 : 243 - 247
  • [39] High reflectivity III-nitride UV-C distributed Bragg reflectors for vertical cavity emitting lasers
    Franke, A.
    Hoffmann, M. P.
    Kirste, R.
    Bobea, M.
    Tweedie, J.
    Kaess, F.
    Gerhold, M.
    Collazo, R.
    Sitar, Z.
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (13)
  • [40] Spontaneous growth of III-nitride 1D and 0D nanostructures on to vertical nanorod arrays
    Singha, Chirantan
    Sen, Sayantani
    Das, Alakananda
    Saha, Anirban
    Sikdar, Subhrajit
    Pramanik, Pallabi
    Bhattacharyya, Anirban
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10)