A remark on Samuelson's variational principle in economics

被引:44
|
作者
Wu, Yue [1 ]
He, Ji-Huan [2 ]
机构
[1] Shanghai Univ Polit Sci & Law, Coll Econ & Management, 7989 Waiqingsong Rd, Shanghai 201701, Peoples R China
[2] Soochow Univ, Natl Engn Lab Modern Silk, Coll Text & Clothing Engn, 199 Ren Ai Rd, Suzhou 215123, Peoples R China
关键词
Variational theory; Lagrange multiplier; Euler-Lagrange equation; Conservation law; ALLOMETRIC SCALING LAWS; ASYMPTOTIC METHODS; CONSERVATION-LAWS; EQUATIONS; BIOLOGY; MODEL;
D O I
10.1016/j.aml.2018.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general derivation of Euler-Lagrange equation of Samuelson's variational principle in economics is elucidated without Lagrange multipliers, and the optimal solutions and prices can be determined easily. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 147
页数:5
相关论文
共 50 条
  • [41] A non incremental variational principle for brittle fracture
    De Saxce, Gery
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 252
  • [42] On a strong minimum condition of a fractal variational principle
    He, Ji-Huan
    Qie, Na
    He, Chun-hui
    Saeed, Tareq
    APPLIED MATHEMATICS LETTERS, 2021, 119 (119)
  • [43] ON THE GENERALIZED VARIATIONAL PRINCIPLE OF THE FRACTAL GARDNER EQUATION
    Wang, Kang-jia
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [44] A HYBRID VARIATIONAL PRINCIPLE FOR THE KELLER-SEGEL SYSTEM IN R2
    Blanchet, Adrien
    Carrillo, Jose Antonio
    Kinderlehrer, David
    Kowalczyk, Michal
    Laurencot, Philippe
    Lisini, Stefano
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06): : 1553 - 1576
  • [45] Variational principle for the differential-difference system arising in stratified hydrostatic flows
    He, Ji-Huan
    Lee, E. W. M.
    PHYSICS LETTERS A, 2009, 373 (18-19) : 1644 - 1645
  • [46] Oldroyd's convected derivatives derived via the variational action principle and their corresponding stress tensors
    Edwards, Brian J.
    Beris, Antony N.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2023, 316
  • [47] A variational principle for Kaluza-Klein type theories
    Helein, Frederic
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (02) : 305 - 326
  • [48] A variational principle for magnetohydrodynamics with high Hartmann number flow
    He, JH
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2002, 40 (12) : 1403 - 1410
  • [49] Variational principle for nonlinear wave propagation in dissipative systems
    Dierckx, Hans
    Verschelde, Henri
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [50] Application of the Composite Variational Principle to Shallow Water Equations
    Yasar, Emrullah
    Ozer, Teoman
    NONLINEAR SCIENCE AND COMPLEXITY, 2011, : 73 - 78