A remark on Samuelson's variational principle in economics

被引:44
|
作者
Wu, Yue [1 ]
He, Ji-Huan [2 ]
机构
[1] Shanghai Univ Polit Sci & Law, Coll Econ & Management, 7989 Waiqingsong Rd, Shanghai 201701, Peoples R China
[2] Soochow Univ, Natl Engn Lab Modern Silk, Coll Text & Clothing Engn, 199 Ren Ai Rd, Suzhou 215123, Peoples R China
关键词
Variational theory; Lagrange multiplier; Euler-Lagrange equation; Conservation law; ALLOMETRIC SCALING LAWS; ASYMPTOTIC METHODS; CONSERVATION-LAWS; EQUATIONS; BIOLOGY; MODEL;
D O I
10.1016/j.aml.2018.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general derivation of Euler-Lagrange equation of Samuelson's variational principle in economics is elucidated without Lagrange multipliers, and the optimal solutions and prices can be determined easily. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 147
页数:5
相关论文
共 50 条
  • [1] A short remark on Kalaawy's variational principle for plasma
    Li, Ya
    He, Chun-Hui
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (10) : 2203 - 2206
  • [2] REMARK ON A CONSTRAINED VARIATIONAL PRINCIPLE FOR HEAT CONDUCTION
    Tao, Zhao-Ling
    Chen, Guo-Hua
    THERMAL SCIENCE, 2013, 17 (03): : 951 - 952
  • [3] A short remark on Chien's variational principle of maximum power losses for viscous fluids
    Liu, H. Y.
    Si, Na
    He, Ji-Huan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2016, 26 (3-4) : 694 - 697
  • [4] ON THE FRACTAL VARIATIONAL PRINCIPLE FOR THE TELEGRAPH EQUATION
    He, Ji-Huan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
  • [5] VARIATIONAL PRINCIPLE FOR A FRACTAL LUBRICATION PROBLEM
    Zuo, Yu-Ting
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (05)
  • [6] VARIATIONAL PRINCIPLE FOR A GENERALIZED RABINOWITSCH LUBRICATION
    Ma, Hongjin
    THERMAL SCIENCE, 2023, 27 (3A): : 2001 - 2007
  • [7] VARIATIONAL PRINCIPLE FOR AN INCOMPRESSIBLE FLOW
    Wu, Yue
    Feng, Guang-Qing
    THERMAL SCIENCE, 2023, 27 (3A): : 2039 - 2047
  • [8] Variational principle for singular waves
    He, Chun-Hui
    Liu, Chao
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [9] FRACTIONAL VARIATIONAL PRINCIPLE OF HERGLOTZ
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2367 - 2381
  • [10] Voluminous, Repetitive, and Intractable: Samuelson on Early Development Economics
    Boianovsky, Mauro
    HISTORY OF POLITICAL ECONOMY, 2022, 54 (01) : 1 - 35