An effective Roth's theorem for function fields

被引:14
作者
Wang, JTY [1 ]
机构
[1] UNIV NOTRE DAME,DEPT MATH,NOTRE DAME,IN 46556
关键词
D O I
10.1216/rmjm/1181072046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will give a new proof of Roth's theorem for function fields which is motivated by Steinmetz's proof of Nevanlinna's second main theorem of slowly moving target functions. This method provides effective results.
引用
收藏
页码:1225 / 1234
页数:10
相关论文
共 7 条
[1]  
Lang S., 2013, Fundamentals of Diophantine Geometry
[2]   SOMETIMES EFFECTIVE "THUE-SIEGEL-ROTH-SCHMIDT-NEVANLINNA BOUNDS, OR BETTER [J].
OSGOOD, CF .
JOURNAL OF NUMBER THEORY, 1985, 21 (03) :347-389
[3]  
STEINMETZ N, 1986, J REINE ANGEW MATH, V368, P134
[4]  
UCHIYAMA S, 1961, J FS HOKKAIDO U, V15, P173
[5]  
VOJTA P, 1987, DIOPHANTINE APPROXIM
[6]  
WANG JTY, IN PRESS J NUMBER TH
[7]  
[No title captured]