Collins formula in frequency-domain described by fractional Fourier transforms or fractional Hankel transforms

被引:0
|
作者
Zhao, DM [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310028, Peoples R China
来源
OPTIK | 2000年 / 111卷 / 01期
关键词
fractional Fourier transforms; fractional Hankel transforms; frequency-domain; Collins formula;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Collins formula in frequency-domain for description of angle spectrum transformation through ABCD optical systems can he written in terms of a fractional Fourier transform in the Cartesian-coordinates, or can be written in terms of a fractional Hankel transform in the cylindrical coordinates. It is shown that, when the matrix element D = 0, it is related to the standard Fourier transform or standard Hankel transform for angle spectrum; and when C = 0, it corresponds to image-forming operator transform in frequency-domain. The case of a thin lens is discussed as also a special one.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [1] Collins formula in frequency-domain described by fractional Fourier transforms or fractional Hankel transforms
    Zhao, Daomu
    Optik (Jena), 2000, 111 (01): : 9 - 12
  • [2] Collins formula in frequency-domain and fractional Fourier transforms
    Liu, ZY
    Wu, XY
    Fan, DY
    OPTICS COMMUNICATIONS, 1998, 155 (1-3) : 7 - 11
  • [3] Similarity theorems for fractional Fourier transforms and fractional Hankel transforms
    Sheppard, CJR
    Larkin, KG
    OPTICS COMMUNICATIONS, 1998, 154 (04) : 173 - 178
  • [4] Collins formula in spatial-domain written in terms of fractional Fourier transform or fractional Hankel transform
    Zhao, DM
    Wang, SM
    OPTIK, 2000, 111 (08): : 371 - 374
  • [5] FRACTIONAL INTEGRALS AND HANKEL TRANSFORMS
    SONI, K
    DUKE MATHEMATICAL JOURNAL, 1968, 35 (02) : 313 - &
  • [6] BARGMANN?S VERSUS FOR FRACTIONAL FOURIER TRANSFORMS AND APPLICATION TO THE QUATERNIONIC FRACTIONAL HANKEL TRANSFORM
    Elkachkouri, A.
    Ghanmi, A.
    Hafoud, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (04): : 1356 - 1367
  • [7] Fractional cosine and sine transforms in relation to the fractional fourier and hartley transforms
    Alieva, T
    Bastiaans, MJ
    SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 561 - 564
  • [8] Generalized fractional Fourier transforms
    J Phys A Math Gen, 3 (973):
  • [9] Simplified fractional Fourier transforms
    Pei, SC
    Ding, JJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2355 - 2367
  • [10] Fractional discrete Fourier transforms
    Deng, ZT
    Caulfield, HJ
    Schamschula, M
    OPTICS LETTERS, 1996, 21 (18) : 1430 - 1432