Matrix Optimization on Universal Unitary Photonic Devices

被引:121
作者
Pai, Sunil [1 ]
Bartlett, Ben [2 ]
Solgaard, Olav [1 ]
Miller, David A. B. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
关键词
525.2 Energy Conservation - 723.5 Computer Applications - 741.1 Light/Optics - 741.3 Optical Devices and Systems - 921.4 Combinatorial Mathematics; Includes Graph Theory; Set Theory;
D O I
10.1103/PhysRevApplied.11.064044
中图分类号
O59 [应用物理学];
学科分类号
摘要
Universal unitary photonic devices can apply arbitrary unitary transformations to a vector of input modes and provide a promising hardware platform for fast and energy-efficient machine learning using light. We simulate the gradient-based optimization of random unitary matrices on universal photonic devices composed of imperfect tunable interferometers. If device components are initialized uniform randomly, the locally interacting nature of the mesh components biases the optimization search space toward banded unitary matrices, limiting convergence to random unitary matrices. We detail a procedure for initializing the device by sampling from the distribution of random unitary matrices and show that this greatly improves convergence speed. We also explore mesh architecture improvements such as adding extra tunable beam splitters or permuting waveguide layers to further improve the training speed and scalability of these devices.
引用
收藏
页数:18
相关论文
共 41 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Unscrambling light-automatically undoing strong mixing between modes [J].
Annoni, Andrea ;
Guglielmi, Emanuele ;
Carminati, Marco ;
Ferrari, Giorgio ;
Sampietro, Marco ;
Miller, David A. B. ;
Melloni, Andrea ;
Morichetti, Francesco .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e17110-e17110
[3]   Machine learning method for state preparation and gate synthesis on photonic quantum computers [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. ;
Izaac, Josh ;
Myers, Casey R. ;
Bradler, Kamil ;
Killoran, Nathan .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
[4]   Using an imperfect photonic network to implement random unitaries [J].
Burgwal, Roel ;
Clements, William R. ;
Smith, Devin H. ;
Gates, James C. ;
Kolthammer, W. Steven ;
Renema, Jelmer J. ;
Walmsley, Ian A. .
OPTICS EXPRESS, 2017, 25 (23) :28236-28245
[5]   Universal linear optics [J].
Carolan, Jacques ;
Harrold, Christopher ;
Sparrow, Chris ;
Martin-Lopez, Enrique ;
Russell, Nicholas J. ;
Silverstone, Joshua W. ;
Shadbolt, Peter J. ;
Matsuda, Nobuyuki ;
Oguma, Manabu ;
Itoh, Mikitaka ;
Marshall, Graham D. ;
Thompson, Mark G. ;
Matthews, Jonathan C. F. ;
Hashimoto, Toshikazu ;
O'Brien, Jeremy L. ;
Laing, Anthony .
SCIENCE, 2015, 349 (6249) :711-716
[6]   Optimal design for universal multiport interferometers [J].
Clements, William R. ;
Humphreys, Peter C. ;
Metcalf, Benjamin J. ;
Kolthammer, W. Steven ;
Walmsley, Ian A. .
OPTICA, 2016, 3 (12) :1460-1465
[7]  
Dangovski Rumen, 2017, INT C LEARN REPR
[8]   Hurwitz and the origins of random matrix theory in mathematics [J].
Diaconis, Persi ;
Forrester, Peter J. .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2017, 6 (01)
[9]   Towards transferring grasping from human to robot with RGBD hand detection [J].
Feng, Rong ;
Perez, Camilo ;
Zhang, Hong .
2017 14TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2017), 2017, :285-291
[10]   Benchmarking integrated linear-optical architectures for quantum information processing [J].
Flamini, Fulvio ;
Spagnolo, Nicolo ;
Viggianiello, Niko ;
Crespi, Andrea ;
Osellame, Roberto ;
Sciarrino, Fabio .
SCIENTIFIC REPORTS, 2017, 7