Mechanisms and rates of genome expansion and contraction in flowering plants

被引:231
作者
Bennetzen, JL [1 ]
机构
[1] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
evolution; illegitimate recombination; retrotransposon; transposon amplification; unequal recombination;
D O I
10.1023/A:1016015913350
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plant genomes are exceptional for their great variation in genome size, an outcome derived primarily from their frequent polyploid origins and from the amplification of retrotransposons. Although most studies of plant genome size variation have focused on developmental or physiological effects of nuclear DNA content that might influence plant fitness, more recent studies have begun to investigate possible mechanisms for plant genome expansion and contraction. Analyses of 'relatively neutral' genome components, like transposable elements, have been particularly fruitful, largely due to the enormous growth in genomic sequence information from many different plant species. Current data suggest that unequal recombination can slow the growth in genome size caused by retrotransposon amplification, but that illegitimate recombination and other deletion processes may be primarily responsible for the removal of non-essential DNA from small genome plants.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 48 条
[1]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[2]   Duplicate and diverge: the evolution of plant genome microstructure [J].
Bancroft, I .
TRENDS IN GENETICS, 2001, 17 (02) :89-93
[3]   NUCLEAR-DNA AMOUNTS IN ANGIOSPERMS [J].
BENNETT, MD ;
LEITCH, IJ .
ANNALS OF BOTANY, 1995, 76 (02) :113-176
[4]  
Bennetzen JL, 1997, PLANT CELL, V9, P1509, DOI 10.1105/tpc.9.9.1509
[5]   ACTIVE MAIZE GENES ARE UNMODIFIED AND FLANKED BY DIVERSE CLASSES OF MODIFIED, HIGHLY REPETITIVE DNA [J].
BENNETZEN, JL ;
SCHRICK, K ;
SPRINGER, PS ;
BROWN, WE ;
SANMIGUEL, P .
GENOME, 1994, 37 (04) :565-576
[6]   Transposable element contributions to plant gene and genome evolution [J].
Bennetzen, JL .
PLANT MOLECULAR BIOLOGY, 2000, 42 (01) :251-269
[7]   Extensive duplication and reshuffling in the arabidopsis genome [J].
Blanc, G ;
Barakat, A ;
Guyot, R ;
Cooke, R ;
Delseny, I .
PLANT CELL, 2000, 12 (07) :1093-1101
[8]   LINEs and Alus - The polyA connection [J].
Boeke, JD .
NATURE GENETICS, 1997, 16 (01) :6-7
[9]   Genome evolution - The changing sizes of genes [J].
Charlesworth, B .
NATURE, 1996, 384 (6607) :315-316
[10]   REPETITIVE DNA IN 3 GRAMINEAE SPECIES WITH LOW DNA CONTENT [J].
DESHPANDE, VG ;
RANJEKAR, PK .
HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1980, 361 (08) :1223-1233