Metamaterial microwave holographic imaging system

被引:150
作者
Hunt, John [1 ,2 ,3 ]
Gollub, Jonah [1 ,2 ]
Driscoll, Tom [1 ,2 ,3 ]
Lipworth, Guy [1 ,2 ]
Mrozack, Alex [1 ,2 ,5 ]
Reynolds, Matthew S. [1 ,2 ,4 ]
Brady, David J. [1 ,2 ,5 ]
Smith, David R. [1 ,2 ,3 ]
机构
[1] Duke Univ, Ctr Metamat & Integrated Plasmon, Durham, NC 27708 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[3] Intellectual Ventures, Metamat Commercializat Ctr, Bellevue, WA 98009 USA
[4] Univ Washington, Seattle, WA 98195 USA
[5] Duke Univ, Duke Imaging & Spect Program, Durham, NC 27708 USA
关键词
SYNTHETIC APERTURE RADAR; MILLIMETER-WAVE; COMPRESSIVE HOLOGRAPHY; ALGORITHMS;
D O I
10.1364/JOSAA.31.002109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a microwave imaging system that combines advances in metamaterial aperture design with emerging computational imaging techniques. The flexibility inherent to guided-wave, complementary metamaterials enables the design of a planar antenna that illuminates a scene with dramatically varying radiation patterns as a function of frequency. As frequency is swept over the K-band (17.5-26.5 GHz), a sequence of pseudorandom radiation patterns interrogates a scene. Measurements of the return signal versus frequency are then acquired and the scene is reconstructed using computational imaging methods. The low-cost, frequency-diverse static aperture allows three-dimensional images to be formed without mechanical scanning or dynamic beam-forming elements. The metamaterial aperture is complementary to a variety of computational imaging schemes, and can be used in conjunction with other sensors to form a multifunctional imaging platform. We illustrate the potential of multisensor fusion by integrating an infrared structured-light and optical image sensor to accelerate the microwave scene reconstruction and to provide a simultaneous visualization of the scene. (C) 2014 Optical Society of America
引用
收藏
页码:2109 / 2119
页数:11
相关论文
共 44 条
  • [31] A Tutorial on Synthetic Aperture Radar
    Moreira, Alberto
    Prats-Iraola, Pau
    Younis, Marwan
    Krieger, Gerhard
    Hajnsek, Irena
    Papathanassiou, Konstantinos P.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (01) : 6 - 43
  • [32] Information, resolution, and space-bandwidth product
    Neifeld, MA
    [J]. OPTICS LETTERS, 1998, 23 (18) : 1477 - 1479
  • [33] Peabody John E. Jr., 2012, Lincoln Laboratory Journal, V19, P62
  • [34] Pozar D. M., 1989, IEEE T ANTENN PROPAG, V37, P418
  • [35] Romberg J, 2008, IEEE SIGNAL PROC MAG, V25, P14, DOI 10.1109/MSP.2007.914729
  • [36] NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS
    RUDIN, LI
    OSHER, S
    FATEMI, E
    [J]. PHYSICA D, 1992, 60 (1-4): : 259 - 268
  • [37] Electric-field-coupled resonators for negative permittivity metamaterials
    Schurig, D
    Mock, JJ
    Smith, DR
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [38] Three-dimensional millimeter-wave imaging for concealed weapon detection
    Sheen, DM
    McMakin, DL
    Hall, TE
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (09) : 1581 - 1592
  • [39] Sherwin C.W., 1962, IRE T MILITARY ELECT, VMIL-6, P111, DOI DOI 10.1109/IRET-MIL.1962.5008415
  • [40] BISTATIC SYNTHETIC APERTURE RADAR INVERSION WITH APPLICATION IN DYNAMIC OBJECT IMAGING
    SOUMEKH, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (09) : 2044 - 2055