Adjoint L-values and primes of congruence for Hilbert modular forms

被引:15
作者
Ghate, E [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, India
关键词
adjoint L-values; congruence primes; Hilbert modular forms;
D O I
10.1023/A:1016562918902
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a primitive Hilbert modular cusp form of arbitrary level and parallel weight k, defined over a totally real number field F. We define a finite set of primes S that depends on the weight and level of f, the field F, and the torsion in the boundary cohomology groups of the Borel-Serre compactification of the underlying Hilbert-Blumenthal variety. We show that, outside S, any prime that divides the algebraic part of the value at s=1 of the adjoint L-function of f is a congruence prime for f. In special cases we identify the 'boundary primes' in terms of expressions of the form N-F/Q(epsilon(k-1) - 1), where epsilon is a totally positive unit of F.
引用
收藏
页码:243 / 281
页数:39
相关论文
共 24 条
[11]  
Hida, 2000, MODULAR FORMS GALOIS
[12]  
HIDA H, 1993, ANN SCI ECOLE NORM S, V26, P189
[13]   ON THE CRITICAL-VALUES OF L-FUNCTIONS OF GL(2) AND GL(2)XGL(2) [J].
HIDA, H .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (02) :431-529
[15]   ON P-ADIC L-FUNCTIONS OF GL(2)XGL(2) OVER TOTALLY-REAL FIELDS [J].
HIDA, H .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (02) :311-391
[16]   P-ORDINARY COHOMOLOGY GROUPS FOR SL(2) OVER NUMBER-FIELDS [J].
HIDA, H .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :259-314
[18]   ON P-ADIC HECKE ALGEBRAS FOR GL2 OVER TOTALLY-REAL FIELDS [J].
HIDA, H .
ANNALS OF MATHEMATICS, 1988, 128 (02) :295-384
[19]   CONGRUENCES OF CUSP FORMS AND SPECIAL VALUES OF THEIR ZETA-FUNCTIONS [J].
HIDA, H .
INVENTIONES MATHEMATICAE, 1981, 63 (02) :225-261
[20]   MOD-P HECKE OPERATORS AND CONGRUENCES BETWEEN MODULAR-FORMS [J].
RIBET, KA .
INVENTIONES MATHEMATICAE, 1983, 71 (01) :193-205