Adjoint L-values and primes of congruence for Hilbert modular forms

被引:15
作者
Ghate, E [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, India
关键词
adjoint L-values; congruence primes; Hilbert modular forms;
D O I
10.1023/A:1016562918902
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a primitive Hilbert modular cusp form of arbitrary level and parallel weight k, defined over a totally real number field F. We define a finite set of primes S that depends on the weight and level of f, the field F, and the torsion in the boundary cohomology groups of the Borel-Serre compactification of the underlying Hilbert-Blumenthal variety. We show that, outside S, any prime that divides the algebraic part of the value at s=1 of the adjoint L-function of f is a congruence prime for f. In special cases we identify the 'boundary primes' in terms of expressions of the form N-F/Q(epsilon(k-1) - 1), where epsilon is a totally positive unit of F.
引用
收藏
页码:243 / 281
页数:39
相关论文
共 24 条
[1]  
[Anonymous], 1988, HILBERT MODULAR SURF
[2]   CORNERS AND ARITHMETIC GROUPS [J].
BOREL, A ;
SERRE, JP .
COMMENTARII MATHEMATICI HELVETICI, 1973, 48 (04) :436-491
[3]   The Taylor-Wiles construction and multiplicity one [J].
Diamond, F .
INVENTIONES MATHEMATICAE, 1997, 128 (02) :379-391
[4]   Discriminant of Hecke fields and twisted adjoint L-values for GL(2) [J].
Doi, K ;
Hida, H ;
Ishii, H .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :547-577
[5]  
DOI K, 1978, UNPUB
[6]   Harmonic analysis in weighted L2-spaces [J].
Franke, J .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (02) :181-279
[7]  
Fujiwara K., 1996, DEFORMATION RINGS HE
[8]  
GHATE E, 2001, P INT C COH AR GROUP, P33
[9]  
GHATE E, 2001, FREENESS INTEGRAL CO
[10]   EISENSTEIN COHOMOLOGY OF ARITHMETIC GROUPS - THE CASE GL2 [J].
HARDER, G .
INVENTIONES MATHEMATICAE, 1987, 89 (01) :37-118