Universal distribution of random matrix eigenvalues near the 'birth of a cut' transition

被引:26
作者
Eynard, B. [1 ]
机构
[1] Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, France
关键词
conformal field theory; matrix models;
D O I
10.1088/1742-5468/2006/07/P07005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the eigenvalue distribution of a random matrix, at a transition where a new connected component of the eigenvalue density support appears away from other connected components. Unlike previously studied critical points, which correspond to rational singularities rho(x) similar to x(p/q) classified by conformal minimal models and integrable hierarchies, this transition shows logarithmic and non-analytical behaviours. There is no critical exponent; instead, the power of N changes in a sawtooth behaviour.
引用
收藏
页数:33
相关论文
共 24 条
[1]   Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model [J].
Bleher, P ;
Its, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :185-266
[2]   Double scaling limit in random matrix models and a nonlinear hierarchy of differential equations [J].
Bleher, P ;
Eynard, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3085-3105
[3]  
BLEHER P, 2002, MATHPH0201003
[4]   Breakdown of universality in multi-cut matrix models [J].
Bonnet, G ;
David, F ;
Eynard, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38) :6739-6768
[5]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[6]  
CICUTA GM, 2000, CONDMAT0012078
[7]   LOOP EQUATIONS AND THE TOPOLOGICAL PHASE OF MULTICUT MATRIX MODELS [J].
CRNKOVIC, C ;
DOUGLAS, M ;
MOORE, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (31) :7693-7711
[8]   RATIONAL THEORIES OF 2D-GRAVITY FROM THE 2-MATRIX MODEL [J].
DAUL, JM ;
KAZAKOV, VA ;
KOSTOV, IK .
NUCLEAR PHYSICS B, 1993, 409 (02) :311-338
[9]   PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (01) :45-58
[10]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO