Nanospace-confined synthesis of coconut-like SnS/C nanospheres for high-rate and stable lithium-ion batteries

被引:54
作者
Deng, Zongnan [1 ]
Jiang, Hao [1 ]
Hu, Yanjie [1 ]
Li, Chunzhong [1 ]
Liu, Yu [2 ]
Liu, Honglai [2 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Ultrafine Mat, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem Engn, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
confined synthesis; micro-evaporation-plating; SnS; hollow nanospheres; lithium-ion batteries; PERFORMANCE ANODE MATERIAL; ENERGY-STORAGE; HIGH-CAPACITY; LONG-LIFE; GRAPHENE; NANOSTRUCTURES; ELECTRODES; NANOSHEETS; SULFUR; TIN;
D O I
10.1002/aic.16068
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Coconut-like monocrystalline SnS/C nanospheres are developed as anode materials for lithium-ion batteries by a micro-evaporation-plating strategy in confined nanospaces, achieving reversible capacities as high as 936 mAhg(-1) at 0.1 Ag-1 after 50 cycles and 830 mAhg(-1) at 0.5 Ag-1 for another 250 cycles. The remarkably improved electrochemical performances can be mainly attributed to their unique structural features, which can perfectly combine the advantages of the face-to-face contact of core/shell nanostructure and enough internal void space of yolk/shell nanostructure, and therefore well-addressing the pivotal issues related to SnS low conductivity, sluggish reaction kinetics, and serious structure pulverization during the lithiation/delithiation process. The evolutionary process of the nanospheres is clearly elucidated based on experimental results and a multiscale kinetic simulation combining the microscopic reaction-diffusion equation and the mesoscopic theory of crystal growth. Furthermore, a LiMn2O4//SnS/C full cell is assembled, likewise exhibiting excellent electrochemical performance. (c) 2018 American Institute of Chemical Engineers AIChE J, 64: 1965-1974, 2018
引用
收藏
页码:1965 / 1974
页数:10
相关论文
共 37 条
[1]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[2]   Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery [J].
Chen, Long ;
Zhou, Guangmin ;
Liu, Zhibo ;
Ma, Xiaomeng ;
Chen, Jing ;
Zhang, Zhiyong ;
Ma, Xiuliang ;
Li, Feng ;
Cheng, Hui-Ming ;
Ren, Wencai .
ADVANCED MATERIALS, 2016, 28 (03) :510-+
[3]   Mesoporous single crystals Li4Ti5O12 grown on rGO as high-rate anode materials for lithium-ion batteries [J].
Chen, Weina ;
Jiang, Hao ;
Hu, Yanjie ;
Dai, Yihui ;
Li, Chunzhong .
CHEMICAL COMMUNICATIONS, 2014, 50 (64) :8856-8859
[4]   Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance [J].
Crossland, Edward J. W. ;
Noel, Nakita ;
Sivaram, Varun ;
Leijtens, Tomas ;
Alexander-Webber, Jack A. ;
Snaith, Henry J. .
NATURE, 2013, 495 (7440) :215-219
[5]   Ultrathin MnO2 nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors [J].
Dai, Yihui ;
Chen, Ling ;
Babayan, Vladimir ;
Cheng, Qilin ;
Saha, Petr ;
Jiang, Hao ;
Li, Chunzhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (42) :21337-21342
[6]   3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries [J].
Deng, Zongnan ;
Jiang, Hao ;
Hu, Yanjie ;
Liu, Yu ;
Zhang, Ling ;
Liu, Honglai ;
Li, Chunzhong .
ADVANCED MATERIALS, 2017, 29 (10)
[7]   Facile growth of 1-D nanowire-based WO3 thin films with enhanced photoelectrochemical performance [J].
Ding, Jin-Rui ;
Kim, Kyo-Seon .
AICHE JOURNAL, 2016, 62 (02) :421-428
[8]   Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries [J].
Douglas, Anna ;
Carter, Rachel ;
Oakes, Landon ;
Share, Keith ;
Cohn, Adam P. ;
Pint, Cary L. .
ACS NANO, 2015, 9 (11) :11156-11165
[9]   Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium-Ion Storage [J].
Etacheri, Vinodkumar ;
Seisenbaeva, Gulaim A. ;
Caruthers, James ;
Daniel, Geoffrey ;
Nedelec, Jean-Marie ;
Kessler, Vadim G. ;
Pol, Vilas G. .
ADVANCED ENERGY MATERIALS, 2015, 5 (05)
[10]   Stabilizing the Nanostructure of SnO2 Anodes by Transition Metals: A Route to Achieve High Initial Coulombic Efficiency and Stable Capacities for Lithium Storage [J].
Hu, Renzong ;
Ouyang, Yunpeng ;
Liang, Tao ;
Wang, Hui ;
Liu, Jun ;
Chen, Jun ;
Yang, Chenghao ;
Yang, Liuchun ;
Zhu, Min .
ADVANCED MATERIALS, 2017, 29 (13)