Almost everywhere convergence of convolution powers on compact Abelian groups

被引:4
|
作者
Conze, Jean-Pierre [1 ]
Lin, Michael [2 ]
机构
[1] Univ Rennes 1, IRMAR, CNRS UMR 6625, F-35042 Rennes, France
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2013年 / 49卷 / 02期
关键词
Convolution powers; Almost everywhere convergence; Sweeping out; Strictly-aperiodic probabilities; ERGODIC-THEOREMS; RANDOM-WALKS; OPERATORS; CHAINS;
D O I
10.1214/11-AIHP468
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well-known that a probability measure mu on the circle T satisfies parallel to mu(n) * f - integral fdm parallel to(p) -> 0 for every f is an element of L-p, every (some) p is an element of [1, infinity), if and only if vertical bar(mu) over cap (n)vertical bar < 1 for every non-zero n is an element of Z (mu, is strictly aperiodic). In this paper we study the a.e. convergence of mu(n) * f for every f is an element of L-p whenever p > 1. We prove a necessary and sufficient condition, in terms of the Fourier-Stieltjes coefficients of mu, for the strong sweeping out property (existence of a Borel set B with lim sup mu(n) * 1(B) = 1 a.e. and lim inf mu(n) * 1(B) = 0 a.e.). The results are extended to general compact Abelian groups G with Haar measure in, and as a corollary we obtain the dichotomy: for mu strictly aperiodic, either mu(n) * f -> integral f dm a.e. for every p > 1 and every f is an element of L-p (G, m), or mu, has the strong sweeping out property.
引用
收藏
页码:550 / 568
页数:19
相关论文
共 50 条