The Schouten-Nijenhuis bracket, cohomology and generalized Poisson structures

被引:50
作者
deAzcarraga, JA [1 ]
Perelomov, AM [1 ]
Bueno, JCP [1 ]
机构
[1] UNIV VALENCIA,CSIC,CTR MIXTO,IFIC,E-46100 BURJASSOT,VALENCIA,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 24期
关键词
D O I
10.1088/0305-4470/29/24/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Newly introduced generalized Poisson structures based on suitable skew-symmetric contravariant tensors of even order are discussed in terms of the Schouten-Nijenhuis bracket. The associated 'Jacobi identities' are expressed as conditions on these tensors, the cohomological contents of which is given. In particular, we determine the linear generalized Poisson structures which can be constructed on the dual spaces of simple Lie algebras.
引用
收藏
页码:7993 / 8009
页数:17
相关论文
共 34 条
[1]  
ALEKSEEVSKY D, 1996, MPI969 BONN I MATH
[2]  
ALEKSEEVSKY DV, 1995, IN PRESS J GEOM PHYS
[3]   REMARKS CONCERNING NAMBUS GENERALIZED MECHANICS [J].
BAYEN, F ;
FLATO, M .
PHYSICAL REVIEW D, 1975, 11 (10) :3049-3053
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]   ON THE GEOMETRY OF LIE-ALGEBRAS AND POISSON TENSORS [J].
CARINENA, JF ;
IBORT, A ;
MARMO, G ;
PERELOMOV, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (22) :7425-7449
[6]   Dynamical symmetries and Nambu mechanics [J].
Chatterjee, R .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (02) :117-126
[7]   Aspects of classical and quantum Nambu mechanics [J].
Chatterjee, R ;
Takhtajan, L .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 37 (04) :475-482
[8]   COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS [J].
CHEVALLEY, C ;
EILENBERG, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (JAN) :85-124
[9]   GRADED LIE-ALGEBRAS IN MATHEMATICS AND PHYSICS (BOSE-FERMI SYMMETRY) [J].
CORWIN, L ;
NEEMAN, Y ;
STERNBERG, S .
REVIEWS OF MODERN PHYSICS, 1975, 47 (03) :573-603
[10]  
de Azcarraga J.A., 1995, LIE GROUPS LIE ALGEB