Vertex-disjoint copies of K1,t in K1,r-free graphs

被引:1
作者
Jiang, Suyun [1 ]
Chiba, Shuya [2 ]
Fujita, Shinya [3 ]
Yan, Jin [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Kumamoto Univ, Fac Adv Sci & Technol, Appl Math, 2-39-1 Kurokami, Kumamoto 8608555, Japan
[3] Yokohama City Univ, Int Coll Arts & Sci, Kanazawa Ku, 22-2 Seto, Yokohama, Kanagawa 2360027, Japan
关键词
K-1; K-r-free graph; Vertex-disjoint stars; Minimum degree; K-1;
D O I
10.1016/j.disc.2016.11.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is said to be K-1,K-r-free if G does not contain an induced subgraph isomorphic to K-1,K-r. Let k, r, t be integers with k >= 2 and t >= 3. In this paper, we prove that if G is a K-1,K-r-free graph of order at least (k - 1)(t(r - 1)+1) + 1 with delta(G) >= t and r >= 2t 1, then G contains k vertex-disjoint copies of K-1,K- t. This result shows that the conjecture in Fujita (2008) is true for r >= 2t - 1 and t >= 3. Furthermore, we obtain a weaker version of Fujita's conjecture, that is, if G is a K-1,K-r-free graph of order at least (k - 1)(t(r - 1) + 1 (t - 1)(t - 2)) + 1 with delta(G) >= t and r >= 6, then G contains k vertex-disjoint copies of K-1,K-t. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:649 / 654
页数:6
相关论文
共 11 条
[1]  
Bondy J.A., 2008, GTM
[2]  
Chvatal V, 1977, J GRAPH THEOR, V1, P93, DOI [10.1002/jgt.3190010118, DOI 10.1002/JGT.3190010118]
[3]  
Fujita S., 2005, FAR E J APPL MATH, V18, P209
[4]  
Fujita S., 2007, HIROSHIMA MATH J, V36, P397
[5]   Vertex-disjoint copies of K1 + (K1 ∨ K2) in claw-free graphs [J].
Fujita, Shinya .
DISCRETE MATHEMATICS, 2008, 308 (09) :1628-1633
[6]   Vertex-disjoint K1 + (K1 ∨ K2) in K 1,4-free Graphs with Minimum Degree at Least Four [J].
Gao, Yun Shu ;
Zou, Qing Song .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) :661-674
[7]   Vertex -disjoint copies of K1,3 in K1,r-free graphs [J].
Jiang, Suyun ;
Yan, Jin .
DISCRETE MATHEMATICS, 2016, 339 (12) :3085-3088
[8]  
Radziszowski S., 2014, ELECT J COMBIN DST, V14
[9]   1-FACTORS AND ANTI-FACTOR SETS [J].
SUMNER, DP .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (JUN) :351-359
[10]   Vertex-disjoint triangles in claw-free graphs with minimum degree at least three [J].
Wang, H .
COMBINATORICA, 1998, 18 (03) :441-447