Dimensions of a class of self-affine Moran sets

被引:4
|
作者
Gu, Yifei [1 ]
Miao, Jun Jie [1 ]
机构
[1] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
关键词
Self-affine set; Moran set; Box-counting dimension; Packing-dimension; Hausdorff dimension; Assouad dimension; HAUSDORFF DIMENSION; FRACTALS;
D O I
10.1016/j.jmaa.2022.126210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we define a class of fractals named "self-affine Moran sets", which are the generalization of classic Moran sets. Simply to say, we replace similarity mappings by affine mappings in the definition of Moran construction. We investigate the packing dimension, upper and lower box-counting dimension and Assouad dimension of these sets and give the dimension formulas. We also study Hausdorff dimension of such sets, we find some sufficient conditions for the Hausdorff dimension formula.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Dimensions of random statistically self-affine Sierpinski sponges in Rk
    Barral, Julien
    Feng, De-Jun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 254 - 303
  • [42] Hausdorff dimension of planar self-affine sets and measures with overlaps
    Hochman, Michael
    Rapaport, Ariel
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (07) : 2361 - 2441
  • [43] On the Lipschitz equivalence of self-affine sets
    Luo, Jun Jason
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1032 - 1042
  • [44] Self-affine sets with fibred tangents
    Kaenmaki, Antti
    Koivusalo, Henna
    Rossi, Eino
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1915 - 1934
  • [45] Local structure of self-affine sets
    Bandt, Christoph
    Kaenmaki, Antti
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1326 - 1337
  • [46] A new class of exceptional self-affine fractals
    Kirat, Ibrahim
    Kocyigit, Ilker
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 55 - 65
  • [47] Dimension of self-affine sets for fixed translation vectors
    Barany, Balazs
    Kaenmaki, Antti
    Koivusalo, Henna
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 223 - 252
  • [48] On the dimension of planar self-affine sets with non-invertible maps
    Barany, Balazs
    Kortvelyesi, Viktor
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [49] Self-affine sets and graph-directed systems
    He, XG
    Lau, KS
    Rao, H
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (03) : 373 - 397
  • [50] SELF-AFFINE SETS IN ANALYTIC CURVES AND ALGEBRAIC SURFACES
    Feng, De-Jun
    Kaenmaki, Antti
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 109 - 119