机构:
East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
Gu, Yifei
[1
]
Miao, Jun Jie
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
Miao, Jun Jie
[1
]
机构:
[1] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
In the paper, we define a class of fractals named "self-affine Moran sets", which are the generalization of classic Moran sets. Simply to say, we replace similarity mappings by affine mappings in the definition of Moran construction. We investigate the packing dimension, upper and lower box-counting dimension and Assouad dimension of these sets and give the dimension formulas. We also study Hausdorff dimension of such sets, we find some sufficient conditions for the Hausdorff dimension formula.(c) 2022 Elsevier Inc. All rights reserved.
机构:
Univ Jyvaskyla, Dept Math & Stat, POB 32 MaD, FI-40014 Jyvaskyla, FinlandUniv Jyvaskyla, Dept Math & Stat, POB 32 MaD, FI-40014 Jyvaskyla, Finland
Kaenmaki, Antti
Li, Bing
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R ChinaUniv Jyvaskyla, Dept Math & Stat, POB 32 MaD, FI-40014 Jyvaskyla, Finland