Dimensions of a class of self-affine Moran sets

被引:4
|
作者
Gu, Yifei [1 ]
Miao, Jun Jie [1 ]
机构
[1] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
关键词
Self-affine set; Moran set; Box-counting dimension; Packing-dimension; Hausdorff dimension; Assouad dimension; HAUSDORFF DIMENSION; FRACTALS;
D O I
10.1016/j.jmaa.2022.126210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we define a class of fractals named "self-affine Moran sets", which are the generalization of classic Moran sets. Simply to say, we replace similarity mappings by affine mappings in the definition of Moran construction. We investigate the packing dimension, upper and lower box-counting dimension and Assouad dimension of these sets and give the dimension formulas. We also study Hausdorff dimension of such sets, we find some sufficient conditions for the Hausdorff dimension formula.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Dimension of generic self-affine sets with holes
    Koivusalo, Henna
    Rams, Michal
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (03): : 527 - 546
  • [22] Dimensions of random self-affine multifractal Sierpinski sponges in Rd
    Olsen, L.
    AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) : 23 - 56
  • [23] Overlapping self-affine sets of Kakeya type
    Kaenmaki, Antti
    Shmerkin, Pablo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 941 - 965
  • [24] Dimension spectra of self-affine sets
    Takahashi, S
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 127 (1) : 1 - 17
  • [25] On the dimension of triangular self-affine sets
    Barany, Balazs
    Rams, Michal
    Simon, Karoly
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1751 - 1783
  • [26] Dimension spectra of self-affine sets
    Satoshi Takahashi
    Israel Journal of Mathematics, 2002, 127 : 1 - 17
  • [27] DIMENSION OF SELF-AFFINE SETS WITH HOLES
    Ferguson, Andrew
    Jordan, Thomas
    Rams, Michal
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 63 - 88
  • [28] Hausdorff dimension of the level sets of self-affine functions
    Peng, Li
    Kamae, Teturo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1400 - 1409
  • [29] CONNECTEDNESS OF SELF-AFFINE SETS WITH PRODUCT DIGIT SETS
    Liu, Jing-Cheng
    Luo, Jun Jason
    Tang, Ke
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (06)
  • [30] Porosity of self-affine sets
    Xi, Lifeng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2008, 29 (03) : 333 - 340