Dimensions of a class of self-affine Moran sets

被引:6
作者
Gu, Yifei [1 ]
Miao, Jun Jie [1 ]
机构
[1] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
关键词
Self-affine set; Moran set; Box-counting dimension; Packing-dimension; Hausdorff dimension; Assouad dimension; HAUSDORFF DIMENSION; FRACTALS;
D O I
10.1016/j.jmaa.2022.126210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we define a class of fractals named "self-affine Moran sets", which are the generalization of classic Moran sets. Simply to say, we replace similarity mappings by affine mappings in the definition of Moran construction. We investigate the packing dimension, upper and lower box-counting dimension and Assouad dimension of these sets and give the dimension formulas. We also study Hausdorff dimension of such sets, we find some sufficient conditions for the Hausdorff dimension formula.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 30 条
[1]   Hausdorff dimension of the limit sets of some planar geometric constructions [J].
Baranski, Krzysztof .
ADVANCES IN MATHEMATICS, 2007, 210 (01) :215-245
[2]   Hausdorff dimension of planar self-affine sets and measures [J].
Barany, Balazs ;
Hochman, Michael ;
Rapaport, Ariel .
INVENTIONES MATHEMATICAE, 2019, 216 (03) :601-659
[3]  
Bedford T., 1984, THESIS U WARWICK
[4]  
Falconer K., 1997, Techniques in Fractal Geometry
[5]  
Falconer K., 2003, Fractal Geometry: Mathematical Foundations and Applications, Vsecond, DOI DOI 10.1002/0470013850
[6]   Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices [J].
Falconer, Kenneth ;
Miao, Jun .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (03) :289-299
[7]   Planar self-affine sets with equal Hausdorff, box and affinity dimensions [J].
Falconer, Kenneth ;
Kempton, Tom .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 :1369-1388
[8]   Intermediate dimensions [J].
Falconer, Kenneth J. ;
Fraser, Jonathan M. ;
Kempton, Tom .
MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) :813-830
[9]   THE DIMENSION OF SELF-AFFINE FRACTALS .2. [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :169-179
[10]   THE HAUSDORFF DIMENSION OF SELF-AFFINE FRACTALS [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :339-350