Duality for multiple objective fractional subset programming with generalized (Γ, ρ, σ, θ)-V-type-I functions

被引:9
作者
Mishra, S. K. [1 ]
机构
[1] Govind Ballabh Pant Univ Agr & Technol, Stat & Comp Sci Coll Basic Sci & Humanities, Pantnagar 263145, Uttar Pradesh, India
关键词
multiple Objective fractional subsets programming; generalized n-set convex functions; duality;
D O I
10.1007/s10898-006-9023-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we use a new class of generalized convex n-set functions, called (F,rho, sigma, theta)-V-Type-I and related non-convex functions to establish appropriate duality theorems for three parametric and three semi-parametric dual models to the primal problem. This work extends an earlier work of Zalmai [Computer and Mathematics with Applications 43 (2002) 1489-1520] to a wider class of functions.
引用
收藏
页码:499 / 516
页数:18
相关论文
共 41 条
[21]   OPTIMALITY OF DIFFERENTIABLE, VECTOR-VALUED N-SET FUNCTIONS [J].
LIN, LJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 149 (01) :255-270
[22]   ON THE OPTIMALITY OF DIFFERENTIABLE NONCONVEX N-SET FUNCTIONS [J].
LIN, LJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) :351-366
[23]  
Liu J. C., 1997, OPTIMIZATION, V39, P239
[24]  
MAZZOLENI P, 1979, SURVEY MATH PROGRAMM
[26]  
MISHRA SK, 1995, THESIS BANARAS HINDU
[27]   OPTIMAL CONSTRAINED SELECTION OF A MEASURABLE SUBSET [J].
MORRIS, RJT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 70 (02) :546-562
[28]  
Pini R., 1997, OPTIMIZATION, V39, P311, DOI [10.1080/02331939708844289, DOI 10.1080/02331939708844289]
[29]   On duality of multiobjective fractional measurable subset selection problems [J].
Preda, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (02) :514-525
[30]  
Preda V., 1991, Optimization, V22, P527, DOI 10.1080/02331939108843695