The Application of Fluorescent Quantum Dots to Confocal, Multiphoton, and Electron Microscopic Imaging

被引:76
作者
Deerinck, Thomas J. [1 ]
机构
[1] Univ Calif San Diego, NCMIR, Ctr Res Biol Syst, Sch Med, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Quantum dot; light microscopy; fluorescence microscopy; electron microscopy; immunolabeling; multiphoton microscopy;
D O I
10.1177/0192623307310950
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Fluorescent quantum dots are emerging as an important tool for imaging cells and tissues, and their unique optical and physical properties have captured the attention of the research community. The most common types of commercially available quantum dots consist of a nanocrystalline semiconductor core composed of cadmium selenide with a zinc sulfide capping layer and an outer polymer layer to facilitate conjugation to targeting biomolecules such as immunoglobulins. They exhibit high fluorescent quantum yields and have large absorption cross-sections, possess excellent photostability, and can be synthesized so that their narrow-band fluorescence emission can occur in a wide spectrum of colors. These properties make them excellent candidates for serving as multiplexing molecular beacons using a variety of imaging modalities including highly correlated microscopies. Whereas much attention has been focused on quantum-dot applications for live-cell imaging, we have sought to characterize and exploit their utility for enabling simultaneous multiprotein immunolabeling in fixed cells and tissues. Considerations for their application to immunolabeling for correlated light and electron microscopic analysis are discussed.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 17 条
[1]   TOTAL INTERNAL-REFLECTION FLUORESCENT MICROSCOPY [J].
AXELROD, D ;
THOMPSON, NL ;
BURGHARDT, TP .
JOURNAL OF MICROSCOPY-OXFORD, 1983, 129 (JAN) :19-28
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[4]   Luminescent quantum dots for multiplexed biological detection and imaging [J].
Chan, WCW ;
Maxwell, DJ ;
Gao, XH ;
Bailey, RE ;
Han, MY ;
Nie, SM .
CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (01) :40-46
[5]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[6]  
Chen Hans, 1995, P197
[7]  
Deerinck Thomas J, 2007, Methods Mol Biol, V374, P43
[8]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[9]   Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots [J].
Giepmans, BNG ;
Deerinck, TJ ;
Smarr, BL ;
Jones, YZ ;
Ellisman, MH .
NATURE METHODS, 2005, 2 (10) :743-749
[10]   Review - The fluorescent toolbox for assessing protein location and function [J].
Giepmans, BNG ;
Adams, SR ;
Ellisman, MH ;
Tsien, RY .
SCIENCE, 2006, 312 (5771) :217-224