Quadratic-Like Dynamics of Cubic Polynomials

被引:10
作者
Blokh, Alexander [1 ]
Oversteegen, Lex [1 ]
Ptacek, Ross [1 ]
Timorin, Vladlen [2 ,3 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
[2] Natl Res Univ Higher Sch Econ, Fac Math, Vavilova St 7, Moscow 112312, Russia
[3] Independent Univ Moscow, Bolshoy Vlasyevskiy Pereulok 11, Moscow 119002, Russia
基金
俄罗斯科学基金会;
关键词
RATIONAL MAPS;
D O I
10.1007/s00220-015-2559-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A small perturbation of a quadratic polynomial f with a non-repelling fixed point gives a polynomial g with an attracting fixed point and a Jordan curve Julia set, on which g acts like angle doubling. However, there are cubic polynomials with a non-repelling fixed point, for which no perturbation results into a polynomial with Jordan curve Julia set. Motivated by the study of the closure of the Cubic Principal Hyperbolic Domain, we describe such polynomials in terms of their quadratic-like restrictions.
引用
收藏
页码:733 / 749
页数:17
相关论文
共 20 条
[1]  
Blokh A., 2013, MEMOIRS AM MATH SOC, V224
[2]  
Blokh A., 2014, ARXIV14112535
[3]   The main cubioid [J].
Blokh, Alexander ;
Oversteegen, Lex ;
Ptacek, Ross ;
Timorin, Vladlen .
NONLINEARITY, 2014, 27 (08) :1879-1897
[4]   THE ITERATION OF CUBIC POLYNOMIALS .2. PATTERNS AND PARAPATTERNS [J].
BRANNER, B ;
HUBBARD, JH .
ACTA MATHEMATICA, 1992, 169 (3-4) :229-325
[5]   Julia sets in parameter spaces [J].
Buff, X ;
Henriksen, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (02) :333-375
[6]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[7]  
Douady Adrien, 1984, Publ Math. Orsay
[8]  
HUBBARD JH, 1993, TOPOLOGICAL METHODS
[9]  
Levin G M., 1991, Colloq. Math, V62, P167
[10]   SOME TYPICAL PROPERTIES OF THE DYNAMICS OF RATIONAL MAPS [J].
LYUBICH, MY .
RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (05) :154-155