S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries

被引:49
作者
Gracia, Ismael [1 ]
Ben Youcef, Hicham [2 ]
Judez, Xabier [1 ]
Oteo, Uxue [1 ]
Zhang, Heng [1 ]
Li, Chunmei [1 ]
Rodriguez-Martinez, Lide M. [1 ]
Armand, Michel [1 ]
机构
[1] CIC Energigune, Parque Tecnol Alava,Albert Einstein 48, Minano 01510, Alava, Spain
[2] Mohammed VI Polytech Univ, Lot 660, Hay Moulay Rachid 43150, Ben Guerir, Morocco
关键词
Li-S batteries; Cathode materials; Organosulfur; Inverse vulcanization; PEO-based all-solid-state lithium batteries; LITHIUM-SULFUR BATTERIES; POLYMER ELECTROLYTES; INVERSE VULCANIZATION; ELEMENTAL SULFUR; ION BATTERIES; METAL ANODE; SALT; CHALLENGES; CELLS; XPS;
D O I
10.1016/j.jpowsour.2018.04.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g(-1)) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.
引用
收藏
页码:148 / 152
页数:5
相关论文
共 35 条
[1]  
Agostini M., 2015, SCI REP, V5, P2045
[2]   Lithium-sulfur batteries-the solution is in the electrolyte, but is the electrolyte a solution? [J].
Barghamadi, Marzieh ;
Best, Adam S. ;
Bhatt, Anand I. ;
Hollenkamp, Anthony F. ;
Musameh, Mustafa ;
Rees, Robert J. ;
Ruether, Thomas .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3902-3920
[3]   The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Huang, Jia-Qi ;
Li, Peng ;
Zhu, Lin ;
Zhao, Lida ;
Zhang, Yingying ;
Zhu, Wancheng ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 6 :18-25
[4]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[5]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/NCHEM.1624, 10.1038/nchem.1624]
[6]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[7]  
Eshetu G. G., 2017, ANGEW CHEM INT EDIT, V129, P1
[8]   In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes [J].
Eshetu, Gebrekidan Gebresilassie ;
Diemant, Thomas ;
Grugeon, Sylvie ;
Behm, R. Juergen ;
Laruelle, Stephane ;
Armand, Michel ;
Passerini, Stefano .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (25) :16087-16100
[9]   Challenges and current development of sulfur cathode in lithium-sulfur battery [J].
Fu, Chengyin ;
Guo, Juchen .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2016, 13 :53-62
[10]   Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries [J].
Gomez, Inaki ;
Mecerreyes, David ;
Alberto Blazquez, J. ;
Leonet, Olatz ;
Ben Youcef, Hicham ;
Li, Chunmei ;
Luis Gomez-Camer, Juan ;
Bundarchuk, Oleksandr ;
Rodriguez-Martinez, Lide .
JOURNAL OF POWER SOURCES, 2016, 329 :72-78