Comparing Photoelectrochemical Methanol Oxidation Mechanisms for Gold versus Titanium Nitride Nanoparticles Dispersed in TiO2 Matrix

被引:16
作者
Baturina, Olga A. [1 ]
Epshteyn, Albert [1 ]
Simpkins, Blake S. [1 ]
Bhattarai, Nabraj [2 ,3 ]
Brintlinger, Todd H. [2 ]
Santiago, Eva Yazmin [4 ]
Govorov, Alexander O. [4 ]
机构
[1] US Naval Res Lab, Div Chem, Washington, DC 20375 USA
[2] US Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[3] US Naval Res Lab, NRC, Washington, DC 20375 USA
[4] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
关键词
HOT; PERFORMANCE;
D O I
10.1149/2.1211910jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Using nanostructured TiO2 as the common matrix, TiN/TiO2 and Au/TiO2 photocatalysts are compared in their activity for photoelectrochemical methanol oxidation testing both visible and UV excitation. We demonstrate that both TiN and Au nanoparticles (NPs) act as photo-sensitizers extending TiO2 activity into the visible region of white light. Our results highlight two major differences between the TiN/TiO2 and Au/TiO2 photocatalysts. First, potential bias is required to initiate visible light-induced CH3OH oxidation at the TiN/TiO2 interface that forms an ohmic junction. Second, the reaction at the TiN/TiO2 interface is most likely driven by the highly reactive holes generated by interband transitions in TiN NPs at wavelengths shorter than 630 nm, while plasmonic effect peaking at 580 nm is thought to be a major driving force for the CH3OH oxidation on the Au/TiO2 material. Under UV excitation, an increase in the saturation photocurrent vs. bare TiO2 is observed both for TiN/TiO2 and Au/TiO2 photocatalysts. We attribute this behavior to (1) the participation of highly reactive holes generated by interband transitions in TiN NPs in photoelectrochemical CH3O H oxidation, and (2) better electron-hole separation at the Au/TiO2 interface due to back transfer of photoexcited electrons from the conduction band of TiO2 to Au. Theoretical modeling is performed to assist with interpretation of optical and photoelectrochemical results. (c) 2019 The Electrochemical Society.
引用
收藏
页码:H485 / H493
页数:9
相关论文
共 32 条
[21]   Hot Electron and Surface Plasmon-Driven Catalytic Reaction in Metal-Semiconductor Nanostructures [J].
Park, Jeong Young ;
Kim, Sun Mi ;
Lee, Hyosun ;
Naik, Brundabana .
CATALYSIS LETTERS, 2014, 144 (12) :1996-2004
[22]   Optical Properties and Plasmonic Performance of Titanium Nitride [J].
Patsalas, Panos ;
Kalfagiannis, Nikolaos ;
Kassavetis, Spyros .
MATERIALS, 2015, 8 (06) :3128-3154
[23]   Titania supported gold nanoparticles as photocatalyst [J].
Primo, Ana ;
Corma, Avelino ;
Garcia, Hermenegildo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (03) :886-910
[24]  
Rodriguez P, 2012, NAT CHEM, V4, P177, DOI [10.1038/nchem.1221, 10.1038/NCHEM.1221]
[25]   Photoelectrochemical Oxidation Enhanced by Nitride Plasmonics [J].
Simpkins, B. S. ;
Purdy, A. ;
Epshteyn, A. ;
Baturina, O. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (22) :13863-13868
[26]   Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au-TiO2 Nanoarchitectures [J].
Sousa-Castillo, Ana ;
Comesana-Hermo, Miguel ;
Rodriguez-Gonzalez, Benito ;
Perez-Lorenzo, Moises ;
Wang, Zhiming ;
Kong, Xiang-Tian ;
Govorov, Alexander O. ;
Correa-Duarte, Miguel A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (21) :11690-11699
[27]  
Stenzel O., 2005, PHYS THIN FILMS OPTI, P277
[28]   Capture, Store, and Discharge. Shuttling Photogenerated Electrons across TiO2-Silver Interface [J].
Takai, Azusa ;
Kamat, Prashant V. .
ACS NANO, 2011, 5 (09) :7369-7376
[29]   Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts [J].
Wang, CY ;
Rabani, J ;
Bahnemann, DW ;
Dohrmann, JK .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2002, 148 (1-3) :169-176
[30]   Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement [J].
Zhang, Hui ;
Govorov, Alexander O. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (14) :7606-7614