Defect-free states and disclinations in toroidal nematics

被引:12
作者
Li, Yao [1 ,2 ]
Miao, Han [2 ]
Ma, Hongru [3 ]
Chen, Jeff Z. Y. [4 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[4] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
关键词
ORDER;
D O I
10.1039/c4ra04441j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the structure of the nematic director field on a toroidal surface, on the basis of two different free-energy models. The two models treat the variation of the nematic field differently; one in full-derivative form and the other in covariant-derivative form. Through solving the Euler-Lagrange equation used to minimize the energy model and conducting a simulated annealing Monte Carlo simulation, we confirm that both models produce a trivial solution as a defect-free state. In the first model, however, there exists a second-order phase transition, beyond which the energy bifurcates into a non-trivial solution as the ground state, as the torus ring radius grows. Using the simulated annealing technique on both models, we also trap the system in excited, metastable states that display nematic-field disclinations.
引用
收藏
页码:27471 / 27480
页数:10
相关论文
共 24 条
[2]   Curvature-induced defect unbinding in toroidal geometries [J].
Bowick, M ;
Nelson, DR ;
Travesset, A .
PHYSICAL REVIEW E, 2004, 69 (04) :12
[3]   Two-dimensional matter: order, curvature and defects [J].
Bowick, Mark J. ;
Giomi, Luca .
ADVANCES IN PHYSICS, 2009, 58 (05) :449-563
[4]   Ring around the colloid [J].
Cavallaro, Marcello, Jr. ;
Gharbi, Mohamed A. ;
Beller, Daniel A. ;
Copar, Simon ;
Shi, Zheng ;
Kamien, Randall D. ;
Yang, Shu ;
Baumgart, Tobias ;
Stebe, Kathleen J. .
SOFT MATTER, 2013, 9 (38) :9099-9102
[5]   Divalent metal nanoparticles [J].
DeVries, Gretchen A. ;
Brunnbauer, Markus ;
Hu, Ying ;
Jackson, Alicia M. ;
Long, Brenda ;
Neltner, Brian T. ;
Uzun, Oktay ;
Wunsch, Benjamin H. ;
Stellacci, Francesco .
SCIENCE, 2007, 315 (5810) :358-361
[6]  
Do Carmo M.P., 2016, Differential Geometry of Curves and Surfaces: Revised and Updated, V2nd
[7]  
EVANS RML, 1995, J PHYS II, V5, P507, DOI 10.1051/jp2:1995147
[8]   Topological defects of tetratic liquid-crystal order on a soft spherical surface [J].
Li, Yao ;
Miao, Han ;
Ma, Hongru ;
Chen, Jeff Z. Y. .
SOFT MATTER, 2013, 9 (48) :11461-11466
[9]   Nematic-Smectic Transition under Confinement in Liquid Crystalline Colloidal Shells [J].
Liang, Hsin-Ling ;
Schymura, Stefan ;
Rudquist, Per ;
Lagerwall, Jan .
PHYSICAL REVIEW LETTERS, 2011, 106 (24)
[10]  
Lopez-Leon T, 2011, NAT PHYS, V7, P391, DOI [10.1038/nphys1920, 10.1038/NPHYS1920]