Determining the memory kernel from a fixed point measurement data for a parabolic equation with memory effect

被引:5
作者
Wu, Bin [1 ]
Wu, Siyuan [1 ]
Yu, Jun [2 ]
Wang, Zewen [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
[3] East China Univ Technol, Dept Math, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Integro-differential equation; Inverse problem; Convolution kernel; Memory effect; Existence and uniqueness; CONVOLUTION KERNEL; INVERSE PROBLEM; HEAT-EQUATION; IDENTIFICATION; CONTROLLABILITY; RECONSTRUCTION;
D O I
10.1007/s40314-017-0427-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem for a parabolic equation with memory effect. This inverse problem aims to identify the memory kernel function from a fixed point measurement data. Based on the fixed point arguments, we derive the global in time existence and uniqueness of our inverse problem. Moreover, we present a numerical algorithm to reconstruct the memory kernel function. Numerical simulations show the effectiveness of the proposed method.
引用
收藏
页码:1877 / 1893
页数:17
相关论文
共 50 条