Determining the memory kernel from a fixed point measurement data for a parabolic equation with memory effect

被引:5
作者
Wu, Bin [1 ]
Wu, Siyuan [1 ]
Yu, Jun [2 ]
Wang, Zewen [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
[3] East China Univ Technol, Dept Math, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Integro-differential equation; Inverse problem; Convolution kernel; Memory effect; Existence and uniqueness; CONVOLUTION KERNEL; INVERSE PROBLEM; HEAT-EQUATION; IDENTIFICATION; CONTROLLABILITY; RECONSTRUCTION;
D O I
10.1007/s40314-017-0427-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem for a parabolic equation with memory effect. This inverse problem aims to identify the memory kernel function from a fixed point measurement data. Based on the fixed point arguments, we derive the global in time existence and uniqueness of our inverse problem. Moreover, we present a numerical algorithm to reconstruct the memory kernel function. Numerical simulations show the effectiveness of the proposed method.
引用
收藏
页码:1877 / 1893
页数:17
相关论文
共 50 条
  • [1] Determining the memory kernel from a fixed point measurement data for a parabolic equation with memory effect
    Bin Wu
    Siyuan Wu
    Jun Yu
    Zewen Wang
    Computational and Applied Mathematics, 2018, 37 : 1877 - 1893
  • [2] Existence and Uniqueness of an Inverse Memory Kernel for an Integro-Differential Parabolic Equation with Free Boundary
    Wu, Bin
    Gao, Ying
    Yan, Lin
    Wu, Siyuan
    Wang, Zewen
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (02) : 237 - 252
  • [3] Existence and Uniqueness of an Inverse Memory Kernel for an Integro-Differential Parabolic Equation with Free Boundary
    Bin Wu
    Ying Gao
    Lin Yan
    Siyuan Wu
    Zewen Wang
    Journal of Dynamical and Control Systems, 2018, 24 : 237 - 252
  • [4] Identification of a memory kernel in a semilinear integrodifferential parabolic problem with applications in heat conduction with memory
    Van Bockstal, K.
    De Staelen, R. H.
    Slodicka, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 196 - 207
  • [5] Identification of a memory kernel in a nonlinear integrodifferential parabolic problem
    Van Bockstal, K.
    Slodicka, M.
    Gistelinck, F.
    APPLIED NUMERICAL MATHEMATICS, 2017, 120 : 305 - 323
  • [6] Determining a potential of the parabolic equation from partial boundary measurements
    Fan, Jiaming
    Duan, Zhiwen
    INVERSE PROBLEMS, 2021, 37 (09)
  • [7] Inverse Problem of Determining a Kernel of the Viscoelasticity Equation with Distributed Data in a Limited Domain
    Safarov, J. Sh.
    Kalandarov, U. N.
    Safarova, M. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (07) : 3380 - 3390
  • [8] NUMERICAL METHOD FOR DETERMINING THE DEPENDENCE OF THE DIELECTRIC PERMITTIVITY ON THE FREQUENCY IN THE EQUATION OF ELECTRODYNAMICS WITH MEMORY
    Durdiev, U. D.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 179 - 189
  • [9] Global Solvability of a Kernel Determination Problem in 2D Heat Equation with Memory
    Durdiev, Durdumurod K.
    Nuriddinov, Zhavlon Z.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2025, 18 (01): : 14 - 24
  • [10] A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation
    Durdiev, Umidjon
    Totieva, Zhanna
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7440 - 7451