Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery

被引:197
作者
Maeki, Masatoshi [1 ,2 ]
Uno, Shuya [3 ]
Niwa, Ayuka [3 ]
Okada, Yuto [3 ]
Tokeshi, Manabu [1 ]
机构
[1] Hokkaido Univ, Fac Engn, Div Appl Chem, Kita Ku, Kita 13 Nishi 8, Sapporo, Saitama 0608628, Japan
[2] JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Hokkaido Univ, Grad Sch Chem Sci & Engn, Kita Ku, Kita 13 Nishi 8, Sapporo, Hokkaido 0608628, Japan
关键词
Lipid nanoparticles; RNA delivery; Microfluidic device; mRNA vaccine; CAS9; MESSENGER-RNA; IN-VIVO; SIRNA; SIZE; FORMULATIONS; VACCINES; DESIGN; SYSTEM; IMMUNOGENICITY; OPTIMIZATION;
D O I
10.1016/j.jconrel.2022.02.017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In 2021, mRNA vaccines against COVID-19 were approved by the Food and Drug Administration. mRNA vaccines are important for preventing severe COVID-19 and returning to normal life. The development of RNA-delivery technology, including mRNA vaccines, has been investigated worldwide for ~30 years. Lipid nanoparticles (LNPs) are a breakthrough technology that stably delivers RNA to target organs, and RNA-loaded LNP-based nanomedicines have been studied for the development of vaccines and nanomedicines for RNA-, gene-, and cell based therapies. Recently, microfluidic devices and technologies have attracted attention for the production of LNPs, particularly RNA-loaded LNPs. Microfluidics provides many advantages for RNA-loaded LNP production, including precise LNP size controllability, high reproducibility, high-throughput optimization of LNP formulation, and continuous LNP-production processes. In this review, we summarize microfluidic-based RNA-loaded LNP production and its applications in RNA-based therapy and genome editing.
引用
收藏
页码:80 / 96
页数:17
相关论文
共 110 条
[1]   Evaluation of Efficacy, Biodistribution, and Inflammation for a Potent siRNA Nanoparticle: Effect of Dexamethasone Co-treatment [J].
Abrams, Marc T. ;
Koser, Martin L. ;
Seitzer, Jessica ;
Williams, Stephanie C. ;
DiPietro, Martha A. ;
Wang, Weimin ;
Shaw, Andrew W. ;
Mao, Xianzhi ;
Jadhav, Vasant ;
Davide, Joseph P. ;
Burke, Paul A. ;
Sachs, Alan B. ;
Stirdivant, Steven M. ;
Sepp-Lorenzino, Laura .
MOLECULAR THERAPY, 2010, 18 (01) :171-180
[2]   Double flow focusing microfluidic-assisted based preparation of methotrexate-loaded liposomal nanoparticles: Encapsulation efficacy, drug release and stability [J].
Aghaei, Halimeh ;
Nazar, Ali Reza Solaimany ;
Varshosaz, Jaleh .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 614
[3]   The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J].
Akinc, Akin ;
Maier, Martin A. ;
Manoharan, Muthiah ;
Fitzgerald, Kevin ;
Jayaraman, Muthusamy ;
Barros, Scott ;
Ansell, Steven ;
Du, Xinyao ;
Hope, Michael J. ;
Madden, Thomas D. ;
Mui, Barbara L. ;
Semple, Sean C. ;
Tam, Ying K. ;
Ciufolini, Marco ;
Witzigmann, Dominik ;
Kulkarni, Jayesh A. ;
van der Meel, Roy ;
Cullis, Pieter R. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1084-1087
[4]   Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia [J].
An, Ding ;
Schneller, Jessica L. ;
Frassetto, Andrea ;
Liang, Shi ;
Zhu, Xuling ;
Park, Ji-Sun ;
Theisen, Matt ;
Hong, Sue-Jean ;
Zhou, Jenny ;
Rajendran, Raj ;
Levy, Becca ;
Howell, Rebecca ;
Besin, Gilles ;
Presnyak, Vladimir ;
Sabnis, Staci ;
Murphy-Benenato, Kerry E. ;
Kumarasinghe, E. Sathyajith ;
Salerno, Timothy ;
Mihai, Cosmin ;
Lukacs, Christine M. ;
Chandler, Randy J. ;
Guey, Lin T. ;
Venditti, Charles P. ;
Martini, Paolo G. V. .
CELL REPORTS, 2017, 21 (12) :3548-3558
[5]   Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique [J].
Arduino, Ilaria ;
Liu, Zehua ;
Rahikkala, Antti ;
Figueiredo, Patricia ;
Correia, Alexandra ;
Cutrignelli, Annalisa ;
Denora, Nunzio ;
Santos, Helder A. .
ACTA BIOMATERIALIA, 2021, 121 :566-578
[6]   Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses [J].
Bahl, Kapil ;
Senn, Joe J. ;
Yuzhakov, Olga ;
Bulychev, Alex ;
Brito, Luis A. ;
Hassett, Kimberly J. ;
Laska, Michael E. ;
Smith, Mike ;
Almarsson, Orn ;
Thompson, James ;
Ribeiro, Amilcar ;
Watson, Mike ;
Zaks, Tal ;
Ciaramella, Giuseppe .
MOLECULAR THERAPY, 2017, 25 (06) :1316-1327
[7]   Lipid Nanoparticle Delivery of siRNA to Osteocytes Leads to Effective Silencing of SOST and Inhibition of Sclerostin In Vivo [J].
Basha, Genc ;
Ordobadi, Mina ;
Scott, Wilder R. ;
Cottle, Andrew ;
Liu, Yan ;
Wang, Haitang ;
Cullis, Pieter R. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2016, 5 :e363
[8]   Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA [J].
Belliveau, Nathan M. ;
Huft, Jens ;
Lin, Paulo J. C. ;
Chen, Sam ;
Leung, Alex K. K. ;
Leaver, Timothy J. ;
Wild, Andre W. ;
Lee, Justin B. ;
Taylor, Robert J. ;
Tam, Ying K. ;
Hansen, Carl L. ;
Cullis, Pieter R. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2012, 1 :e37
[9]   Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant [J].
Bernal, Jamie Lopez ;
Andrews, Nick ;
Gower, Charlotte ;
Gallagher, Eileen ;
Simmons, Ruth ;
Thelwall, Simon ;
Stowe, Julia ;
Tessier, Elise ;
Groves, Natalie ;
Dabrera, Gavin ;
Myers, Richard ;
Campbell, Colin N. J. ;
Amirthalingam, Gayatri ;
Edmunds, Matt ;
Zambon, Maria ;
Brown, Kevin E. ;
Hopkins, Susan ;
Chand, Meera ;
Ramsay, Mary .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (07) :585-594
[10]   Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering [J].
Billingsley, Margaret M. ;
Singh, Nathan ;
Ravikumar, Pranali ;
Zhang, Rui ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2020, 20 (03) :1578-1589